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Editor's Preface

"Baroclinic instability as the largest scale of motion participating in
the cross frontal oceanic transport process" was the theme of the 25th summer
program at G.F.D. Killworth (Cambridge University) reviewed classical
baroclinic instability theory, leading up to recent studies in which the
distinctive structure of an ocean front is included. Finite amplitude
baroclinic instability in the classical model was discussed by Pedlosky (WHOI)
(and the corresponding effect in the frontal model was studied by one of the
G.F.D. Fellows).

Laboratory experiments on baroclinic frontal theory was surveyed by
Griffiths (Australian National University) (and one of our Fellows extended
that work in Whitehead's (WROI) lab this summer).

The different kinds of oceanic fronts were surveyed by Joyce (WROI),
and additional observations were supplied by several of the invited staff.
The smallest scales of motion relevant to the cross-frontal transfer problem
were discussed from the oceanic standpoint by Osborn (Naval Postgraduate
School) and from the point of view of laboratory experiments by Ruddick

* (Dalhousie University), among others. (This subject was also one which was I
followed up by a G.F.D. Fellow.)

"- The main theme was supplemented, as in all previous years, by a diver-
sity of geophysical fluid dynamical subjects, the nature of which can be seen
in the abstracts included in this report.

The smooth running of the program is due in no small measure to the
secretarial expertise of Florence Mellor and Joanne Jones and to the
administrative expertise of A.L. Peirson. Finally we thank the Office of
Naval Research and the National Science Foundation for their financial support.

Melvin E. Stern
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BAROCLINIC INSTABILITY AND OCEAN FRONTS

Peter Killworth

LECTURE 1 .. ,%*

Introduction: Isentropic Equations of the Ocean 1.1

The fluid is described by a set of scalar and vector fields: mass per %

unit volume ? velocity v, salt per unit mass S (a single state variable
collectively describing many solutes more or less in constant concentration
ratios), absolute temperature T, pressure p, and entropy per unit mass (or
any thermodynamical potential like the internal energy a or Gibb's free%
energy

The motion of the fluid is governed by conservation equations for mass,
momentum, salinity, and entropy. A general conservation equation for a
quantity "a" per unit volume expresses a balance between the local rate of
change Ita, the advective flux V . (av), other fluxes P .o , and local
sources and sinks A:

t _a _ (av) + V*o A

or, introducing the substantial derivative Dt t + v . V,

Dt a + a :.v+ .o =A ()

where a can be a tensor of any order.

For conservation of mass, let a= o( 0, A = 0:

Dt f + v =0 (2) J'

For conservation of momentum, let a =  j ....

* A = f (- -2 A x v + D) where = 10 ms-l includes gravity

and centrifugal accelerations, ? e' 10-4s- 1 is the earth rotation, and
, contains the dissipative terms: molecular viscosity rvJ 2 v, and

" parameterized small-scale turbulent friction if the equations are to describe
large-scale phenomena only. Using (2) we get:

+ 1 V p 2 x v + D(3)

For conservation of salt, let a = 0S, ( = 0, A = Ds where Ds
contains the salt transport terms (molecular diffusion or parameterized
turbulent diffusion):

- : DtS Ds  (4)

Finally, for conservation of entropy, let a = , = 0,
A = D where D is the entropy creation from irreversible processes:

Dtt =D (5)

. .... *.-.............................................mm ......L*. ............ t.i . . .......... -....... S- -s _



... . . .. . . . : .-- - . . .- . . • .. S . ..

-2-

In addition, we have (empirical) equations of state for p and as

functions of the state variables S, T, p:

e (S, T, p) (6a)

1 l(S, T, p) (6b)

Equations (2) to (6) are a set of 8 equations in 8 unknown fields,
first order in time, which, with top, bottom, and lateral boundary conditions,
completely describes the motion. A discussion of the boundary conditions is
found in Gill (1982).

Conservation of energy per unit mass can be derived by taking
v . (3), while conservation of vorticity is obtained by taking V x (3).

This system of primitive equations describes a wide class of possible
motions; in the next pages, it will be simplified to filter out processes that

have little effect on large-scale oceanic motions.

1. Isentropic Approximation

A rigorous treatment of the molecular transport terms is found in
Kamenkovich (1977). It is not reproduced here because dissipation enters most
oceanographic models often through crude parameterization of smaller scale
processes rather than directly through molecular diffusion.

Wave motion and large-scale flows are adequately described by setting
DI = 0, Ds - 0 in (4) and (5) (this approximation filters out differential .

di fusive processes). However, in many cases the stability of inviscid flows
is quite different from that of a viscous fluid, and D. should be kept in
(3). This is thermodynamically inconsistent, but the viscous dissipation of
all the kinetic energy of 1 kg of water with fluid velocities of 0.1 ms- 1

would only raise the temperature by a neglectible 10-6 K.

The disagreeable entropy is then readily eliminated from the equations
(after some nontrivial manipulation of Maxwell relations). Plug (6b) into

* (5), and get:

DtT T oCT Dt p (7)

where ol(S, T, p) - r ) is the coefficient of thermal expansion and -"

Cp(S, T, p)the specific heat. (The coefficient in the IlS

is the adiabatic gradient of temperature).

Plugging (6) into (2), we can also derive

Dt iDt p (8)

c2

where c(S, T, P) is the sound velocity. (The coefficient in the

RHS is the adiabatic gradient of density).

... .. .*.-..... . ... .. - .. . 5. . . .. , . . . .. . . . ... . .. . . .• . .. • .. . . , . . . . . .;
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2. Incompressibility Approximation

The period of acoustic waves is generally less than 1 s, much less than
the periods of other oceanic waves; acoustic waves have a group velocity of
c ev 1.5 103ms-1 , while the fastest surface gravity wave has
cg 9" 2 102ms-1 , and most other waves - Internal, planetary - have c 'a
less than 1 ms-1 ; a fortiori, c is much larger than any particle velocity,
and we can expect sound waves to play no role in the dynamics of the ocean.

Plugging eq. (8) in eq. (2), we get:

*V- -l Dt p
--

which, for c *- o ,is:

V .V' 0 (9)

This approximation makes the fluid kinematically incompressible, while
retaining the effects of compressibility in (7) and (8). Sound waves are
filtered out. Equation (9) means that, in (2), P " f' and
that the main balance is between the components of the divergence.

3. Boussinesq Approximation

Assume that the fields can be decomposed in an adiabatic, hydrostatic

equilibrium state (0), and a perturbation component ('):

S.V v
-- S SO(r) + S' (10)

T = T° (r) + T'
p = pO(r) + p'

To be a solution of the equations, the equilibrium state must satisfy

0 O(SO ' TO, pO) (lla)

VpO oV (11b)

Plug (10) in (3), (7) and (8), use (1la) and (lib), replace remaining

0 + ') by p 0 (at a given pressure, p '- 5 10 -  0), assume
Cp, and c constant, neglect the perturbation pressure field in (7) and (8),

and drop the (').

The final system of equations for an isentropic, incompressible,
* Boussinesq fluid is:

Dtr -v 0 0(12)

-. v 0 (13)

-1 -I R -2 xv +D (14)

- _ _0

-"'-. . * *.* * -- bh *.fo
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DtS = -v . 7 so

DtT -- _ (VTO- T 9)

Cp

These equations are a system of 7 equations in the 7 unknown perturbation
fields P. v, S, T, p.

Note that S and T have lost their dynamical role, and are simply
advected by the velocity field v: consequently we will drop them in the
subsequent discussion.

4. Tangent Plane Approximation

Equipotential surfaces of the earth's gravity and centrifugal field
are oblate ellipsoids, with small axis along the axis of rotation, and ec-

" centricity e ,' 1/300; the equilibrium sea level is one of these surfaces.

= g =-V , the gradient of geopotential, defines the local vertical.

The relative variation of g is 10-J from equator to pole and through the
. depth of the ocean: it has no dynamical effects and can be ignored in (12)
" and (14).

The natural coordinate system would be the oblate ellipsoidal
"- coordinates; Veronis (1973) explicitly writes (12) to (14) in that system.

The principal effect of sphericity is the variation of the angle
(42,_ g) with latitude -- and hence of the horizontal components of the
Coriolis acceleration, but the exact oblate ellipsoidal metric contains
several other geometric effects of minor dynamical importance: poleward
convergence of equipotentials and meridians, downward convergence of

* verticals, which may be neglected.

Because of the mathematical complication of the full ellipsoidal
* metric, it is customary to introduce an approximate cartesian metric in the

neighborhood of a reference point pO, adequate to model meso-scale oceanic
motions. The full derivation is found in Mysak and LeBlond (1979). Assume
the scales: H, depth of the ocean; L, lateral scale of the motion; R, radius
of the earth; U and W " UH/L, horizontal and vertical velocities. Provided

,' that

H/R << 1

(L/R)2 e 1

tan/ 0 (Lu)4C 1, PO is away from the pole

a simplified form of (12) to (14) can be written in a local cartesian system
centered at po(A o0 R), with x eastward, y northward and z upward:

Dt w foN2 (15)

.... . .... ... ... ... ... ... ...



'XU +'?yv + '?w- 0 (16)

Dtu Xp + (fo + ~y)v + fw+ Dx(17)

Dtv -11y P fo +lY)u + DY (18)

2 2
Dtw-u + v =i z P fu+ Dz (19)

R 0o

where

Dj + U'- V?

f= 2JAsin o V. 10-4 s-1

*f =2..cos 0

=O r/R"20-11 m-1 S-1
and

N2 (z) z -o 
+&~ c2

is the buoyancy frequency of the adiabatic equilibrium Btate.

* Except for geometric distortions intolerable only at the planetary
*scale, damage to the physics has been minimal so far. Most oceanic motions,

surface waves, internal waves, and planetary waves are still fully described
by this system of equations.

The coming simplifications are the most drastic - the hydrostatic

approximation will low pass surface gravity waves and internal gravity waves;
* the quasigeostrophic approximation, developed in lecture 2, will remove

gravity waves altogether.

5. Hydrostatic Approximation.

Provided that

H/L < 1, the aspect ratio is small

cotJO(H/L) t1, PO is away from the equator

the main balance in (19) is hydrostatic:

0 -l 'zP-~ (20)

0 ?o~
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and, for consistency, the Coriolis term fw must be neglected in (17):

Dtu - -1_k p + (fo + e y)v + DV

as can be verified by a worst-case order-of-magnitude estimation; if

p /Po ri 10-3, U .v 10-1 ms-1 , W - UH/L, H '10 3m, L 103m,

the magnitude of the terms in (19) are:

Dtw " -i 5 
. •

U2/R "J 2 i0-4 ~:v-oo
go v 1' 

.0- 
2.

fu " 10- 5

Notes Submitted By
Pierre Flament
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LECTURE 2

Initial comments

5. The quasigeostrophic approximation assumes large-scale flow structures,
and geostrophy In the. fundamental balance. It has the advantage that it
describes the dynamics in terms of a single dynamic variable, the potential
vorticity,

Some disadvantages of the method are I) it is still nonlinear; ii) by
assuming small Rossby number Ro - A/L , one is restricted to low frequency

(O < f), large-scale flows which may not include important physical
phenomena such as fronts. Conservation of potential vorticity can be derived
without first invoking quasigeostrophy (Charney, 1973; Pedlosky, 1979); and
iii) only small perturbations of the stratification are allowed. Note that
the potential vorticity is difficult to measure in the ocean since it involves

*determining horizontal gradients of the geostrophic flow, i.e., from arrays of

instruments. These gradients can be contaminated by noise data and
underestimated by inadequate sampling.

- Equations of Motion: from Lecture 1

Conservation of mass: (really conservation of volume or continuity)

- + 2f+-2Y_0 (16)

. Conservation of momentum:

_ -(17)

+ ; F : -- 4 F-9

Hydrostatic balance:

(20)
" Conservation of buoyancy:

'~f (~.~ 0.(15)

Informal Derivation

Neglecting forcing terms Fx, Fy, and Q and assuming a geostrophic/
hydrostatic balance, the equations of motion to lowest order reduce to:

rr Ok""L4121lo ,

"B
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These equations are degenerate. To obtain prediction equations, one must go

to the next order

- - -i

-a X

...

: . ... :

where D. -

and Qd/a is the unperturbed density gradient which is large compared to

the perturbed stratification '34 2z

From the two momentum equations, eliminating P1,

Substituting for Uo and Vo from (1) and using continuity (16)

R.

IW D

where N2 ---

STherefore,

D.
- L9 X



Formal Derivation

Definition: The Rossby number, Ro _U (21)
fL,

describes the magnitude of the nonlinear vs. Coriolis terms. For the

~large ocean gyre s, U - 0.1 als, f - 1O
-

4, L - 106
m 

- 1000 km. and

then Ro v 0.001 (small). For fronts U - 0.5 m/s, L - 104 - 10 km,

and Ro z 0.5- 0(1) and the quasigeostrophic formalism is not strictly
valid.

Nondimensionalization: (xy) - L(x',y') where L is the smaller of the two
dimensions

Z HZ'

t - Lt,
U (22)

(u,v) - U(u',v') assuming horizontal isotropy (may
not be valid)

w - HUw' -- this will prove to be too large

Now, scale P APf assuming geostrophy; this is a strong restriction and
will not be valid near fronts where isopycnals intersect the surface)

from geostrophy (23)

from hydrostatic balance (24)

Then k Er f-A~ ~~i'~~

where the Mach number 4 being small is a condition for incompres-

71sibility. 
H

The nondimensional equations of motion then become

r~4vt. ~r'-4~ 0(25)

I.- .,

ID)( - -V" (26)

""...(27)

____ (28)
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(29

Let ,4V= . -O

so the /$-effect cannot be neglected except for small y-scales;E4

and N - 0.01- -1.0 k

Two extreme cases of r.

i) for large, ax

--dimensionally

,-. /a '-- (30)

and long Rossby waves exist.

Under the large approximation, complications can arise due to
nonlinearity in the buoyancy equation leading to fronts and shocks and the i
assumptions are violated (Anderson and Killworth, 1979).

"+b -t a&" J :-) i C "=  C(f) (31)

so, given a density contrast, the differential phase speed of Rossby waves can
lead to convergence and discontinuities .e

ii) For 60 can get a consistent quasigeostrophic regime.

Expand variables in Ro: U- Uo + RoUI +

Then the nondimensional equations of motion to lowest order become to 0(1):

.- "L-:., -.:.-.-

9. ,,- + 03 " o-
X , -, (32) '"

(33)" --

(3 .4).,

c,-,:.:-< *,-.-.., . -. - *- -,. *:;., '.*- , <*~ . '-..> *.'*. .**'.. *.. . * .. -.:,-v-, .:. - ,-,-.. -:. ..-. *":.. ,'-...'. -. -*..- .. ".. . ' . ... "
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f(35) 
W

(37) .. -,
I 2-'' , - -(horizontally nondivergent)

From (36), Vrb' , 0 (38)

and -
z " ~(39) --- "

Note: To lowest order, there is no evolution in time in the equations.

2"2 To next order O(Ro): d - -± O (40) .'. -

II. 7

tr
-.

-D- - i A (42)

* 0(43)

where o - - ' ' + (44)'"

Eliminating Pi' between (41) and (42)

No .V-'.+/60.45
' 6Jii 1 -,iT jA ~'.''

-" 2 . "''-" . . ._. . . . . .... . . ..... .- - " - U " " ' " ' -- - . . : " ' " " - - " ' ' - " " ' - "'
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~> ± VN $ W~ (46)
DC

) ii) iii)

w vhere i) is the relative vorticity, ii) the change in planetary vorticity, and
iii) vortex-stretching.

From (43),

2.

bJ;~Ij.2S~z .2~fI(47)

/YJ= / Dt.' •1

* (48)

Therefore, (46) becomes

+ --r2O (49)

~LV±(~)Z~.iL + ~ (50)
This system of equations trivially satisfies a solvability condition which
prevents boundary-layer effects (multiple scales) or growing secular terms inhigher orders. This is a consequence of PI' being single-valued when there m
are no sources or sinks in the fluid.

Notes Submitted By
Eric Kunze

* . . . - ** .*...- ..

: ,, . '- . .. .. -. ,- , - . , ., , , . .. ., ., .. . - .. . -. . ... . . . . ..
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.1, LECTURE 3

Let's start the discussion with the potential vorticity equation we had
derived last time. The nondimensional form is

-;:Fl(50)

where Q is the potential vorticity, defined by the terms contained inside the
Ij I brackets. Note that there are three terms that contribute to potential

" vorticity; the first term is the relative vorticity, the second is the
vorticity stretching term, and the last is the planetary vorticity.

In words eq. (50) simply states that if we follow the quasi-geostrophic
flow, we would find that the potential vorticity does not change.

Let's now revert back to the dimensional form of eq. (50) where we have
-" also dropped the subscript o.

+a
where

S - N 2-v ..

Note that we could have used the thermal wind equations also

Also recall that we had assumed that nondimensional ,-0(l) and NH< 1.
fL

and inNotice that the limit of weak stratification corresponds to 'H/,L« -

and in this case the appropriate incompressibility condition (derived from 43)
leads to =1k7,,0.

'" In the limit of very strong stratification ( Nhj>> ) eq. (50)
simplifies to

which has no vortex stretching term. Both of these limits are discussed in
more detail in Pedlosky (1979).

We will now compare the tilt of the streamlines with the tilt of
isopycnals to find if the fluid moves in and out through the isopycnals for
the above limits.

" Tilt of the streamlines is w/v which can be estimated as(H/L)Ro from
our previous discussion. The tilt of isopycnals is (I)a which can be

written as U11: (&t.•-

"I- -Z + U

where thermal wind equation has been used.

.................................. * .. . . .
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2~ 2

NOW Tilt of Streamlines H/L Ro N2H2

Tilt of Isopycnals =fV - .r

which is the same dimensionless parameter we had encountered just a while C'.
ago. Now we are in a position to sketch the relative orientation of
streamlines and isopycnals.

Isopycnals

Streamlines-- •-
Stemie Streamlines

Isopycnalsr."

Weak Stratification Strong Stratification
NH'>~

. Note that when the stratification is weak bouyancy force has a component along %
the streamlines, and these motions are able to release the potential energy.
For strong stratification, no potential energy is released.

NH
As we have seen so far, the nondimensional parameter - is of great

fundamental importance. We now use it to define a new length scale

L , NH is called the 'deformation radius'
f or 'Rossby radius'.

As we shall see later, this length scale is of great physical L. '
significance. (Its typical value in the ocean is 30-100 km).

We now state without any derivation that the potential vorticity
equation is energetically consistent. Using the usual steps one can prove that

d dxdydz (KE + PE) f 0

where KE 1/2 tVyJ/2 and PE - 1/2 ._2L2 4/z

uR N2
"

VH is a gradient operator in the horizontal, and PE is the potential energy
based on the displacement of the isopycnals from their position in the mean
stratification.

. _ _ '_ . _.' °_ __ • ..."- -' ' ' 'i -' ; ' " i '" i " t = " " ' - -' - / " - ' ' " " ' : " " ' ¢ " 
"' '.

' "' "" 5
'
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,;. Linear Dynamics, Waves, and Instabilities

This is a new section, and we will start the numbering of the equations
back from 1.

Ignoring the nonlinear terms in the quasi-geostropic potential
vorticity equation we get

In order to simplify matters, let's choose N to be a constant. Now we
can seek solutions to eq. (1) of the form '-'S-

Ik exp 1.kx +- ly + mz - tt (2)

Substituting eq. (2) in eq. (1) yields the dispersion relation

LO. -/ - (3) :

where K2  k2 +1 2 +f2 m2 (4)

is an 'effective' wave number.

If (3p>O, we note that the x-component of the phase speed points
towards west. Further note that the group velocity Cg is given by

2V 2f (5)

can point in any direction depending on the wave number.

These waves are called Planetary waves or Rossby waves. If N was not a
constant, one thinks of a WKB analysis.

The most interesting property that these waves have is that on the
* northern hemisphere their phase travels to the west. There is a crude

physical argument to motivate this and is worth looking at.

We assume that >  and With this assumption we can
ignore the stretching term in the potentiat vorticity. The basic principle
governing the dynamics is the conservation of potential vorticity, i.e.(/;y +
q)is conserved where q is the relative vorticity.

'* Clearly for particles which are displaced to north (south) their
planetary vorticity increases (decreases) and hence they must develop a
negative (positive) relative vorticity.

Now consider an array of particles lined up in the East-West

direction. Assume that a particle (1) is given a northward displacement. As
' argued before it will develop a negative vorticity. The flow which is induced

by this vorticity pushes the particle (2) which is to the west of (1)

%.- ..
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northward and particle (3) towards south, as a result of which particles (2)
and (3) develop a negative and positive vorticity respectively. The induced
flow resulting from these acts to bring particle (1) back to its original -

position and the net result is a westward propagation of phase.

X Fo.9

3

2.

The presence off3 is absolutely crucial to the above example, if ,3is
* zero then the system cannot support any waves.

But there is another way in which we can produce wave propagation, and
that is by modifying our boundary. Let N be a constant and t3 =0. The

* potential vorticity equation then says

=0 where 'I

* q =0 is then a perfectly good solution

_q +2 3'" ".°(6)

N1  Z %
Now imagine that we have a sloping bottom as sketched:

The boundary condition on the bottom is the usual no normal flow condition
. which gives: caNow since we want as 0(R) 0Y =>

-. : :,. . -.
. . . " -.
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i.e. we have to remain contented with a small slope, but, aha we can also k,? 0
conveniently linearize the boundary condition and apply it at z - 0.

Solving for eq. (6) gives 12

i x1 -ot? AU-~(-k1 Jt.)'K!(7)
where the -ye sign has been chosen so that all disturbances decay as z •0 .

The linearized boundary condition is

On substitution we get

.-- ( )(8)

or ((9))

Note that if o( > 0, 4W/k < 0 which implies that the phase of these waves
travels left of upslope.

Interestingly the dispersion relation of these waves does not involve
f, nonetheless existence of f is crucial to be able to support wave-
propagation. Let's now compare the mechanisms which bring about vorticity
change in the two types of wave we have considered.

1) Rossby waves require the existence of a potential vorticity
gradient which was provided by the planetary vorticity in our example.

2) In topographically generated waves vorticity changes because of the

stretching.

We can now make our second example look like the first one by
considering the following mathematical problem

.. -f- 0( 0 iwh1ere- S(z) is the Dirac S-function (10)

* d.

with ' 0 at z--
and as z - '-.

It can be shown that the above mathematical problem has the same
solution as we obtained for our second example. The result is that we can
think of the boundary as providing a cJ-function in potential vorticity and

hence making wave propagation possible.

Note: A question we raised about why any internal wave modes did not %

appear in the examples illustrated and whether they would appear at higher
order. After some discussion it was agreed upon that internal waves had been
filtered out of present analysis (by Hydrostatic Approx.).

.'.' -'.
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Baroclinic Instability 
;" .

Let's choose a basic state which is not at rest and here we chose one-_
which requires no forcing and the basic question to be asked is when do we
'wave' and when we do not.

Choose an East-West mean flow. U ) V"(1
U(y,Z), V V 0 (11)

Note that any function U(y,z) will satisfy the dynamical equations. Let the
streamfunction be g(y,z), i.e. y- -U.

Now the Mean Potential vorticity is given by

It is useful to keep in mind the typical size of U -,

Atmosphere U - 70 m/s
Ocean away from boundaries U - 5 cm/s
(in mid latitudes) -

In boundary currents U - 1-2 m/s

Uow consider small perturbations to these
q(x,y,z,t) = V " (12)

The perturbation vorticity q is governed by
+""--'d

0 ,- o(13)

where the first term represents the advection by the mean and the second term
is the northward advection of the mean by the perturbation velocity field.
Qy is the potential vorticity gradient and is given by

(14)

Here we note that we have forced an anisotropy in the problem since total
U > totallV'. Furthermore, we now have a mean flow and so we anticipate
the answers to be qualitatively different from what we have seen so far.

Before we get entangled into the mathematics, let's look at some basic "
physics. Since we have a nonzero Uz, the thermal wind reminds us that

.y o( Uz, hence the Isopycnals are tilted in the (y,z) plane. Let's
* sketch them for definiteness.°°Z .. * -.- ,

JLj~ht

aA .v A*

A 8 .1.

i ".' J
Hec•vj
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% P

Now we can go through the usual argument of particle exchange and arrive at
the following conclusions. 1) If the vector joining the exchanged particles
makes an angle >, the tilt of the isopycnals (as sketched in A), then the
buoyancy force tends to restore them to their original position. ii) How-
ever, if this vector makes an angle that lies within the tilt of the
isopycnals and horizontal (as sketched in BB), a component of the buoyancy
force acts to displace the particles further, hence this range of angles can
be potentially unstable.

The argument just presented is incomplete since i) it neglected the

perturbations have enough room to grow'; iii) it ignored all dynamics.

Let's now consider a simple example. Here we choose f3 - 0 and
N - constant. We also choose a linear profile for the mean flow,
i.e. U- Uz Z + U1 which gives

Qy -0 (15)

our past experience tells us that

q 0 (16)

is a good solution.

C.

Z= 0,1

We also recall that this leads to
-Z-f

The boundary condition at Z -0 is 44'= 0. This leads to -.

- 0 at Z 0

• Since = the above simplifies to

i which on substituting for gives

~U 4 U (18)

112-
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We can identify the first term on the RKS as a dnppler shift and the second
term reminds us of the sloping bottom example we did previously. If we make
the following identification fUz/N- -CN, then we obtain exactly the same
expression as in the sloping bottom case (without the doppler shift). We can
also interpret the phase speed (ignoring the doppler shift) as the mean speed
at scale height f/(N -tf ) . The logical question to ask nov is why do
the answers resemble each other. The reason is as follows: "* '

i) Qy-0
ii) Both problems actually had a S-function Qy

Here 2- U, (-z) which identifies o( to be precisely what .
we just did.

We did not find an instabiity and did we release potential energy?
Compute the net mass flow in the horizontal direction

ffdzIAPeV- f~x, CC ff'dzA71 LtY eC f~4x(-)

So we did not release any potential energy! b

It is then an obvious question to ask as to what conditions must hold

for instability. There are a fair number of theorems that exist most of which
are discussed in Pedlosky (1979). These theorems are not very illuminating -.

and at best provide bounds on growth rate, etc. which are correct to an order
of magnitude (i.e. they are not very tight bounds). We shall nevertheless

consider one necessary condition for instability.

Let's go back to the equation governing the perturbations

(# LU) (V -1 +f2 4~~ ± 0q. (19)
where U - U(y,z). We note that the above PDE is nonseparable in y and z but
is separable in x and t.

We consider '- to be proportional to exp ik (x- ct) which leads to

+uc)i~/~ g1)I Q"-'/= 0 20) .(20

Notice that if c is real, the solution is stable and if c is complex with
Im C 0 it is unstable.

The boundary conditions we consider follow: b .

In x: Long box or cyclic or infinite.

In y: no normal flow on y -0 and y L or i.e. 0 (21) ,% ..

or

In z: - 0 on z = 0 and z - -H which implies

(U -c)q.z -U z = 0 at z -0 and -H (22)
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Multiply eq. (20) by k and integrate over y and z giving

4i- h1j2+~t)~ / 4 0 (23)

Let's manipulate the individual terms

-d - 2.

22

~~~2 )Z 0i-J I~ ~

N (U-C) N 2 ,

With these eq. (23) can be written as

2. Z (2 4 )

b= fydz 2-I.l-,l'I-1 ." f [+ l l . ,iz I = (2 4)

-' ) 2(u-<) H-c

Note that Im = 'r) , U-c -  
_ C""

Hence by taking the imaginary part of eq. (24) we get

Ci + JLI4ZCIW/ - (25)

which leads to the result due to Charney and Stern (1962), namely,

C4 O QZ) All cannot have the same sign,

.ZZO Z= -If

or, generalized Qy must change sign somewhere for instability.

Notes Submitted By
SanJiva Lele ""

.... .. -
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LECTURE 4

In the previous lectures we derived the evolution equation for the j i
potential vorticity of the perturbation which was written in a dimensionless
form as (remembering equations from (1) again) i.

-,- 44) -- (

U is the mean velocity in the x direction, and Qy is the y derivative of the -

potential vorticity of the mean flow

The boundary conditions are those of rigid lids limiting the upper and lower
. surfaces. Then

+ U ( u -u for z O, H (3)

The perturbation is also supposed to be enclosed in a given domain, so that

C 0 on y - L (4)

We discussed in the previous lecture some necessary conditions for
instability. Another approach of the instability phenomenon is given by
considering the integral equation for energy. This is useful in order to
distinguish more clearly the different kinds of instabilities which may occur,, -
namely barotropic and baroclinic instabilities.

Since t.o--), and Cro - I,3 , the local kinetic energy of the
* disturbance is written

~2.

On the other hand, the local potential energy of the disturbance is expressed
as

The integral energy in the whole domain is then

" (J -3'"
AV 411 + 4 ,IV .-.(5)

.• ,._

.:. .,. .. . . ,.-... .. -. .,..... .,.. .. . - ,, .. . .. ,. ,. , .. ., ,, , ,. . . . , . .,. ...::

~1
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An evolution equation is obtained after multiplying Eq. (1) by Y and
integrating over the domain

q + 4.tp caa  V= 0 (6) ."0.

After several integrations by parts* (using boundary conditions (3) and (4)),
we get an equation which expresses the time evolution of energy of the distur-
bance in terms of transfer of kinetic and potential energy.

(7)• : E JV - V U, q % + u % j :

. The two parts of the right member of this equation may be rewritten as

GI -V

JU G4V V Jd( .r) U (8)

and

Vf UW -,S % 6V L- ) (')

j Therefore, (8) expresses kinetic energy transfer between the mean flow and the
turbulent flow through Reynolds stress terms. These transfers involve neither
the vertical structure of the mean flow nor the stratification. This effect
is expected to be mostly barotropic.

Eq. (9) gives the transfer between the potential energy of the mean
flow and the perturbation. By the thermal wind relation 3.W)/N 2 is related

. to the tilting of the Isopycnal from north to south which produces the
available potential energy. The transfer of energy occurs through the
correlation of turbulent velocity and density -%T. This transfer will
produce an instability mostly baroclinic.

Eq. (7) may be rewritten in a symbolic way

'L aV = Transf. Kinet. Energy + Transf. Avail. Poten. Energy (10)

Discussing the general problem of instability, two limit cases appear,

which we summarize in this schema:

T. K. E. > T. A. P. E. > Barotropic instability

T. A. P. E. T. K. E. 4 Baroclinic instability

*There is no boundary condition in the x direction, but a condition of

periodicity, as done in Pedlosky (1979) (sections 7.2 and 7.3).

"o
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There is a big number of models involving baroclinic or barotropic
instability. The conditions for the mean flow are often very ideal
conditions. We are more interested in predicting the different kind of

% instabilities, which will occur for different situations. We will therefore
% not present all the classical models in detail. We will only present the

ideal case of the Eady Model (for baroclinic instability) and a case of
barotropic instability close to Rayleigh's problem.

BAROCLINIC INSTABIITY: EADY MODEL

This model is a purely baroclinic one since the mean flow is taken
uniform in a horizontal plane

, ,14 Uy o

The flow is supposed to be contained
between two rigid planes, with no
effect

////// " 7// // fl/

The stratification is taken as a constant, and we assume a linear vertical
shear

N const U zU"

We look at a solution for (1) which has the form

L(ev.u 2) (11)

For the present case (1) reduces to

wZ N (12)

with K2 =k 2 + 12, a general solution is

4): + B(13)

the condition of 0 vertical velocity on boundaries (Eq. 3) leads to

U v H -c) 4) (H) - L) 4.1(.4) ..
(-U3H-c) LI 0. ) (-H) (14)

A nontrivial solution for is found when

.. L. . kI iJfX cA ( 1- (15) .

iC

7
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Negative values for C2 are found when NKH/f < 1.1997. Calling
L -1/K the scale of the disturbance the perturbation appears to be unstable
when its scale is large enough so that

L > N H

the imaginary part Ci of C and the growth rate KCi are plotted on this

. ,figure.

C.I

Two limit cases may be considered which give a picture of the

instability

- Long waves: NKH f

It comes from (15)

C~± I1& i.(16) ,-N

Long waves are unstable. Using the boundary condition (14) 4 may be
calculated from Eqs. (11) and (13). It may be shown (Pedlosky, 1979, p. 462)
that a z-dependent phase appears. 4) is written.

L7- c e( + kx + at ('))e ,,::

This phase change is necessary for 0j; 0. The overbar represents the
average over one period 2T1 /k on the x axis. A necessary condition for
instability is then Z/4 > 0 which means physically that the surface

of constant q) must tilt upward and westward.

-short waves: NKHQ 1>
f

We now get from (15) C !L4 U+-  (17)

The solution consists then in two stable waves

L3Hand0( E

C ^--UH and 4) e

The wave travelling in positive direction is trapped near the lower boundary,
and the wave travelling in negative direction is trapped near the upper
boundary. These waves are trapped so close to the boundary that they may be

considered as waves travelling in a domain where one of the boundaries is at
infinity. Such waves are known to be stable, and this explains physically the
stabiity of short waves in Eady's Model.

• L. . |"V
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Although Eady's Model gives a good idea about Daroclnic instability,
the fact that instability results from the boundary conditions remains one
important defect of this model.NN

BAROTROPIC INSTABILITY: RAYLEIGH'S PROBLEM
V

This problem is the horizontal equivalent of Eady's problem. All . "
0 baroclinic terms are no longer considered

Uz O 0z~ 0

As in Eady's model, we do not either consider fS effect: V)= 0
A horizontal mean flow is considered as follows:

U U K for y > L

U =UY y for -L%"y< L

U =-UY L for y <-L

We get Qy Uy, S(y-L) -16(y + L)3 .Therefore Qy 0 except
for y =±L. Instability will depend on the jump conditions at y- L

(4)continuous' Uct~ 441.=0 )

Eq. (1) is integrated in each region of the domain (1), (2), (3):-

Region (1) A4  e j1 e *A>.

*Region (2) (4)I A e + Be % (18)

ALLL
Region (3) LP. (Ae + B LS a<L

so that 4)remains continuous at y -L



E - 27-

-' Integration of Eq. (1) at the points y - t L leads to a linear system where A
and B are unknown. Nontrivial solutions for A and B are found only if

C, U2 f.L -I 4e

The stability diagram shows that sufficiently long waves are unstable, and?
that short waves remain stable.

0

This fact may be easily understood if one recalls the fact that tLP is as
sensitive to the jump conditions at y = :t L as k is small. Then for small k
(long wave), the wave "sees the flow" as a sharp discontinuity, which is a
well known case of instability.

r...

- ,. On the other hand, for large values of k (short waves), the perturbation
decreases very rapidly as Izl increases, and the wave ignores the jump

* conditions at y = t L. The waves behave like a wave in a domain of constant
shear.

k Many other problems of instability have been treated in the literature,

like Charney's or Phillip's models. These models present specific cases
involving either barotropic or baroclinic instability. We will not consider
them since we are more interested in predicting the different kind of
instabilities which will occur for different situations. In fact, in physical
situations the mean flow possesses horizontal shear as well as vertical.

IL. Therefore either barotropic and baroclinic instabilities could occur. The - "
problem is, in fact, to know which one will arise or whether the instability
will be a mixed one.

,. °p:.
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" We will present a theory which will distinguish different possible
situations of instability. The reader will find the details in Killworth
(1980) and Holland and Haidvogel (1980).

First this theory tends to take into account the fact that the Brunt
V~isa-llf does not remain constant through the whole fluid.

, .

For a fluid of depth H, N varies only over a layer of depth H in the
upper part of the fluid: 0(1). A suitable definition for the deformation
radius is therefore

a No H (20)
-- f

We are interested in treating the general problem, i.e. without
throwing out either the vertical or horizontal shear.

The equation for potential vorticity remains p

w'44 L + (P-U04% -U4iI4 = 0 (21)

For boundary conditions, we assume rigid boundaries at the top and at
the bottom of the fluid, i.e.

(U- C) Le U M (22)

and for lateral conditions, the perturbation is assued to vanish at infinity

.0 as y

which imposes no further horizontal scales on the problem. In order to get
(21) in a nondimensional form we use the following scaling:

(x,y) " L (z)-%' H
(c,u), U (k) L-

( )~ U/L2 (N) N0

The length scale L, as well as the velocity scale U, denote typical
scales of the MEAN FLOW. Then (22) becomes

.W..

, .--.- - .- . - " -- . - ,- . , '. ..- . -- .
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where ) is taken as - L/a and is the fractional variation of N. The
two parameters 'A and & are the two essential parameters which will govern
all the asymptotic expansion we want to provide in order to determine the type

* of instability if any will occur. It is useful at this stage to keep in mind
the different orders of the physical quantities and get an idea of typical

• values of ) and S .

The following table summarizes different situations:

L(km) a(km) U(m s-1 ) 16 'P

Ocean 1000 30 l.5x10-2  0.1-0.2 30 40-2000
Gulf-Stream 60-100 30 1 0.1-0.2 2-3 0.2

. North-Atlant Eddy 100 30 10-1 0.1-0.2 3 2
Atmosphere 5000 1000 20 1 5 25
Anticyclone 1000 1000 20 1 1 1

" Laboratory 10 - 4  10 - 4  l.5x10-2  1 0.5-3 ?

We may evaluate from Eq (7) the energy transfer term which feeds energy
* to the disturbance or take some from it. It follows that

_SEG al uf, J: (24)

T.K.E. T.A.P.E.

-It comes out that-%/N characterize the ratio of potential energy to kinetic
energy which is transferred to (or from) the perturbation. We would therefore

1% expect to get a mixed baroclinic-barotropy instability when )'S2/i 1. On
C; the other hand the instability would be rather baroclinic if 76%$/NZ >> ,

and rather barotropic if <<-i/N «-.

We will now examine more carefully all these different possibilities,
considering limit cases.

1. )large

In this case we expect an instability, when it occurs, to be mainly
- baroclinic. We do not want to examine a ID problem along the vertical axis,

but we will consider two cases, namely, when the y scale is of the order of
unity, and when it is small

(i) y scale is of order unity

S is assumed to be 0(l) and + fS, . This allows to consider

either important P effects ( 0o 0) or weak ( 0).

It comes from the energy integral that for k = 0(A ) the solution is
stable if k is sufficiently large. We will therefore assume k = 0(l).

and c are expanded at the different orders of the parameter

•' .Ctl. o + W, + .. :.(25) " "

7C

:-. ij,./ v.X-. -.' - . .' ..',-.-.;' .v ..-...... "..-........ ......-...-.. • -:....2- :....--. - -



To the first order (23) becomes

(u C)" " is (26) -

Unless o O, there is no solution to first order. Assuming then

.-_Ola trivial solution to (26) is .- _

SA() (L u - C) (27)

Substituting Y o in the second order equation and integrating along
the z axis, we obtain

- -..A4 ,AL(

where and Q are defined as

0 ( .- ) f (U-C.)
0

The second order equation (28) determines A, taking into account the y
structure of U. Solving (28) by computer shows unstable solutions whose

- growth rate is of the order of unity. The instability is in fact found to be -

baroclinic in the sense that the ratio T.K.E/(T.K.E + T.A.P.E) calculated as
defined from Eq. (24) is close to 0.

Notes Submitted By

Mathieu Hory

L7,
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-. LECTURE 5

y-scale << 0(1)

One can think of two methods which may be applicable to the present ^

case; one is the WKBJ-method and the other is the local expansion technique.

If one poses a WKBJ-type solution of the form = (y,z)exp( 2U(y))

and provided that Co is known, Dj can be determined, to the leading
order, as an eigenvalue o-Fte local y-independent vertical problem. Since it
is generally difficult to know how the eigenvalue varies with y, Co, or k,
however, one cannot proceed analytically (except for special cases such as a

- two-layer case).

Here we apply the local expansion technique near a specified point
-- =y yo. Define a local stretched coordinate ?I by

'-= Z"1/2 (y-YO) (1)

*. as suggested by Simmons (1974). The x-scale of the solution is assumed to be

o(a) : k -.Zk o (ko is 0(l)) (2)

t. :-. and -=Oo2 will suffice for the present purpose. Expanding the
variables in terms of li/2 about yo, we have

(to ) (3)

(4)

ad S ,."

C, =  Co t CI tCz--/L + ..... (5) .

S-'Substituting eqs. (3),(5) into eq. (), we obtain 2

, r~ _ ____ , , .. ,

* -Co + (-) -Z G/. t (6)

whlefomte ondr'cnitos tz , 1

*°• I -± 2  i' "" -

(6)

wi To the leading order, that iS 0(Z 2 ), we have
.

... . .:--5 . *

.. ~~.2 X7 ,):-
:2, '+2 'v/:

+ 2

', *P-o e_' . * .S .- *' . . .. •" ' . " .. , ' * ," , -" -, . * ,- * S
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where the left-hand side defines the linear operatorto. The boundary
conditions become :-

CC V- L C' 0 at z - 0,-i, (8)

where again XoR is defined by (8). Thus the problem to this order is simply
to solve a local baroclinic instability at y - yo. The eigenvalue Co can
be determined from (7) and (8). Then, 311o may be assumed to have the form of

(9)

where g(z) is the eigenfunction corresponding to the eigenvalue Co for eqs.
(7) and (8). Although Co is obtained at y - yo, it is not obvious to this
order whether CO is going to remain a valid eigenvalue when the y-dependence
is taken into account. Also the form of h(7) cannot be determined to this
order. In order to answer these problems, one has to proceed to next order.

* ~ ~Z +(ID C0  ;)k ) =c, (10)

whereal
. :,(11) 2

The boundary conditions turn out to be

ZIA (12)

where

)at- (13)

One is not interested in the functional form of 1/1. In order to assure
that the expansion (4) is valid, however, Zl must exist. After
multiplying eq. (7) by ,/(L#-L,) and eq. (10) by ,hA' ,.-C) , subtracting
them, and integrating from-i to 0 with respect z, one obtains the following
algebraic equation:

A 7 + BC1 - 0 (14)

where A and B are known functions of ko and yo! (14) is satisfied if

A - 0 and C1 - 0 (15)

From the condition A - 0, yo may be determined (in most cases, uniquely):

i.e. A - 0 defines Yo (16)

Since C 1 - 0 means ,.C,(17) .

the eigenvalue CO evaluated near yo is equal to that evaluated at yo.

Generally speaking, it is not easy to find yo which satisfies (17), w
since it seems rare that both real and imaginary parts of Co simultaneously
become stationary at a single real value y - yo. If the basic flow has a
local axis of symmetry in y for all z, however, the axis could be yo, since

*" (ci'"%f).,. = C. Otherwise, yo becomes complex.

*A is linear in (d (.,

.................... . . . o * ,.-..
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We have stretched the y-coordinate by 2L1/2. This cannot be
justified until it is confirmed that the wave has a y-structure which is
confined to the vicinity of yo. One can determine the form of h(1l,) in the
next order and will find, in fact, this is to be the case.

to 0(Z): + MC) :+ 0 (18)

where tC 2 is an operator which involves S2, U and C 2. Eliminating

V-2, after some calculation, we obtain the following equation to determine
the structure of h( S):

( CZh + )h (19)
where Q and R are known complex constants. The solution h of (19) which

decays off as t~i-, o is given by a parabolic cylindrical function:

h = ep (- RL S7/2) H (R '* ) (20)

where Hn is the n-th Hermite polynomial (n: positive integer) and the "
branch of R1/ 2 should be chosen so that Re (R1/2) f 0. The eigenvalue

C2 is given by p-"..

C2 - -2R1/2(n-1/2)/Q (21)

Hereafter we consider the case when Im(RI/2/Q)>0*. Then, the fastest
growing mode is given for n 1, its eigenvalue C being given by

OC C c -

U and its eigenfunction by

Thus, if yo is real as in the case when the basic flow has an axis of
symmetry, the y-scale of the unstable wave is 0(7k112), or, in dimensional
unit, 0(4i)(see Figure 1). If the basic flow does not have an axis of
symmetry, however, YO typically becomes complex with a small imaginary

, part. Then, /4" decays away from a point near y = Re(yo on a scale of
1.1/2, while the phase of r changes on a scale of %:1 (see Figure 2).

The energy source of this instability is baroclinic conversion of the
available potential energy and the growth rate of the unstable wave is 0(L)
which is greater than that for the case when the y-scale of the solution is

- 0(1).

*In order that the expansion (5) is valid, n cannot be large. If

Im (RI/2/&)<0, the growth rate increases with n. Thus, it is not possible
*" to consider the fastest growing mode within the present treatment. It has

been shown by Simmons (1974) that Im (RI/ 2 /6-) is apparently always positive

for jets (Killworth, 1980); no cases where it is negative are known.

4.'

..-. ".-:-

* 4.--.- - -
.
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Notes Submitted By
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LECTURE 6

In the last lecture we investigated the large asymptotic behavior of O

the solution of the equation:

where: - L/a
- depth scale of the N variations
- .. L2/v

In this lecture we will focus on the small asymptotic as well as on
the J'z< 1 limit.

The limiting case when AZ< 1

: We first anticipate that since L 4a the flow is very narrow compared
r with the radius of deformation, a, and therefore the stratification does not.
• ' significantly affect the flow. This might be an indication that the flow is -.

barotropic. We get another indication in the same direction by considering
the ratio of total kinetic energy to total available potential energy,
TKE/TAPE; this can be shown to be of the order of -. Hence for small "

* the kinetic energy seems to be the source from which the instabilities can
draw their energy.

Indeed for a two-layer problem it can be shown that this is the case
(Killworth, 1980), but for the continuous case things are not as simple.

" . If we naively expand C and Y in power series of

"L C ... (2)

then the leading order equation is

*I - 4 o (3)

This equation is identical in form to the Rayleigh equation. However, U in
(3) is a function of Z also, so that for each value of Z there exists an

- eigenvalue, Co, of (3). For different values of Z, different eigenvalues C
will be encountered, and therefore in general (3) has no solutions. An
exception to this unfortuitous situation is if U varies slowly with Z(I.e. Uz < o(,?11 k

-" Thus, the neglected Z variations of *V must be important somewhere, and

we distinguish between various possibilities; a boundary layer at the surface
or at the bottom or a region at an intermediate depth in which Y is nonzero,
vanishing above and below it.

- For the last case, where T vanishes outside a region around Zo we can
'* transform Z to a stretched coordinate about Zo, -A -1/2 (Z-Zo);(we could

also formally proceed by a WKBJ expansion). In the local coordinate

.--.. -d: .. .- . .; - -.. . .-* *, . .. .." ". .; " ". . . . . . .- ,'''- ' -" - -; - . . - - -" " '
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the leading order equation which we get from (1) is equation (3) with U(y,Z) ..

replaced by U(y,Zo). Therefore, the leading order equation yields Co as a
function of Zo. The next order equation, (0 ( L/2)) then provides the
solubility condition and this determines Zo. '7

If there exists Zo such that Uz(y,Zo) - 0 ,V' , then Co is indeed
the eigenvalue of the local Rayleigh problem near Zo. in general, however, we
have to consider the case when Zo is complex

The next order equation (0(A)) then determines the variation of t'
with depth, and it turns out to be a parabolic cylinder function of the form

for some complex number 4 with Re (o)> O. Thus, the solution is confined in
the vertical to range 0(A 1 /2 ) with rapid oscillations (in phase) on depth ...

scale 0(A ) (since Z. is complex). We see again a behavior similar to the
large A solutions (but with Z replacing y and -1 replacing j). The
schematic of the solution is:

Y Y, __ 2

.- -.-

- .. _____ __ - : -1

where the thick lines shows frI and the thin lines show the phase of '4. If
Uz(y,Zo) - O,Vy then the phase of '*e varies on Al/2 scale, too.

The instabilities in this case are indeed barotropic as we have
anticipated.

In the other cases mentioned where the boundary layer is (say) at the
top, it can be shown (Killworth, 1980) that no solutions exist unless U-C is
suitably small somewhere at the surface. In the y-independent case of this
problem (i.e. with U-C suitably small at the boundary layer) the instabilities
are baroclinic, and this is contrary to our naive expectation.

Other parameter ranges which are of interest:

In this case the stratification is confined to a very thin top layer -, '
and Nz changes on a J-- 1 scale, while A is 0(1) and so is P. The
velocity field will be assumed to vary on vertical scales of order 1 so that

is large below depths of the order of c. We consider two cases:

....-.-........ -........_-............. ..-...
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ZA If varies over the whole depth
B *is confined to a layer of thickness of order J.

In case A, below Z-1 , the main terms in (1) are

(5)

and this has a solution

(6)

where U - U(yo).

Since near the surface ((Z<i) the vertical derivatives are small
when (6) is substituted in (1), we get the near-surface equation

* LLJ " f~ T 7,O) -zO (7)

Therefore, (6) is a solution if the surface velocity is unstable in the sense
*. of the Rayleigh problem (7). The instability is baroclinic in this case.

In case B, * is confined to the surface, and we transform to the
stretched coordinates =Z&-1. In that case the leading order of (1)
yields

4(8)d..

where u(y) = u(y,o) as in the preceding case. The boundary conditions are

(9)
-0'-

Equation (8) has a separable solution in y and of the form
'P(y,) = a(y) g(T) " Substituting this form in (8) we get the O.D.E. for g

4: - a(10)

where g has to satisfy the boundary conditions (9) and where o( is the
separation constant. Equation (10) has a countable infinity of solutions and
eigenvalues a( since N--0, --- o . For each of these eigenvalues o( we
get the following Rayleigh equation for A(y)

Again the surface velocity has to be unstable in the Rayleigh

(barotropic) sense, and the resulting instability is barotropic. .O:

I P
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There are other limiting cases discussed in Killworth (1980) as well as
two-layer versions of all these limits, but we will stop here and summarize
the finding for the continuous case in the following (h, r ) diagram showing M
which instabiities are found in the various parameter regions.

Owl
ioq 0C. I ic.

(0) h-OM ,W-o ) I k- 01)').

h-oh) . -o,,W-0 l W- ,

M 1 1 I ,('M
K )')o l B o v , 1 M

0 (b)BCorBT. j h-Oil).
k-o0). 1-0l) .r

(a) ?or8l, 8 6.
(b) BC of 6T. k-01,).

1096 0

BC baroclinic instability " I $* I
BT barotropic instability
? arbitrary
M mixed
cases (a) refer to U,N varying over the same scales
cases (b) refer to U varying over the entire depth.

Until now we used the normal mode approach to study the stability of
various quasi-geostrophic systems. We will focus our attention now on a -
time-dependent baroclinic fnstability and study as a particular case of the
time evolution of the instability in Eady's problem (for a more complete
treatment, see Simmons and Hoskins, 1979).

We start with a simple velocity field

Z-H • I .. *

U =AZ

Z -0

and look at a meridionally homogeneous stream function

Scaling Z by H, t by Af/N and k by NH/f (so that U Z), we get the -
following equation for Y from the quasi-geostrophic potential vorticity
equation or 7." z (12) ...

and the boundary conditions are no normal flow at Z = 0,1 i.e. U

'tt - A'.ro Z- 1 (13)

7_71.
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I* .: Oz - o (14)

The integration of (12) with respect to t yields

The EXP 6, ) Pz) (15)

The general solution of (15) is

* ~t(z- EXP(- /hzt) ~-l)Co5tH(.1 Z)- -(Sf.VH toZ) (16)

where A(t), B(t) are determined by the boundary conditions (13), (14).

-" We now introduce the complex growth rates of the normal mode problem,
i.e., A(t), B(t) e (..-exp exp ( < t ) where

TAW A . (17)

We apply an initial disturbance which is independent of depth

with periodic boundary condition at X-L/Q What the numerical
integration of the equation showed is that the disturbance was advected
downward at about the phase speed of the fastest growing normal mode but its

* growth rate is significantly larger. The vertical variation of the
disturbance approached the normal mode form very slowly but the downstream
development of the disturbance at the bottom was much faster than the normal
mode calculation suggests.

"' These numerical findings demonstrate the need for a more accurate
temporal analysis. Thus we look at a localized initial perturbation of the
form

The symptotic theory for expressions of the form (18) is well
established and we look for the solution at a point X which moves downstream
with velocity V . After all transients have decayed the perturbation can be

- written as

Y (X,7, t. I F()(A[xp P )4 t) &-~(19) 1

where () (C )

I. .. -_ . . --- ---- - - -

S - ~ -.-..
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The theory of Bers (1975) suggests that if there exists a compLex ks

such that with Im (ks)> 0ii -
then (19) can be approximated by

Vvu. a(t AXP( L/(20) V
This gives a local wavelength 2)k/Re(ks), a local growth rate of Im.a(ks)and a local phase speed of Re(. (ks))/Re(ks) + U. .

If we apply this to the parameters of Eady's problem discussed
previously _ becomes i.

and k s is determined by

2--,, i¢ .I-- | (22)

where

X T -coT( )(( -TT I H 14 (23)

1Z Taking the positive root of (22) we find that 2 0 at

FIN (- - I- (24) ""-

A solution X of (24) exists only if U 1. When U -i, X =1, i.e.,

Analytical solutions for the case U = 1- , 4' 1 can be obtained and they -
are:

X~i~~ 2- & (25)-

T' and this gives

(26) -"

Therefore this positive root of (26) gives a saddle point (where = 0)
with Im :1400 and this demonstrates the existence of a local instability with

a short zonal wavelength of order -2.4(/ln f/
2 , a local growth rate of

order j ' /2 and a phase speed of order 1 + 1/ln F 1/2.

Although these estimates are valid for t- P they are in good

agreement with the numerical simulation after 1 day. .

Notes Submitted By

Nathan Paldor
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-- LECTURE 7

Instabilities of Fronts

A few informal remarks are in order before we proceed with the theory.
A front may be characterized as a narrow region with a steeply inclined
density surface (isopycnal).

--- C deformation radius

Fronts form on different scales, but in general the cross-front scale
of the motion will be less than the deformation radius a = c/f, where c is the
internal wave speed (for two layers, c - ' .6' ) and f the Coriolis..

- parameter. Thus, the significant quasigeostrophic scale a, informally the
width to which quasigeostrophy holds, will not be small enough to resolve the
front. Typical speeds on fronts will be of the order of the internal wave

speed c, so the vorticity will be typically of order c/a = f, and a typical
Rossby number will be of order 1. The density p will not be a small
perturbation to a uniform stratification in the depth z. Clearly, then,
quasigeostrophy will not be a good theory for discussing frontal dynamics
(formation, meanders, etc.).

For the most part we will ignore convergence fronts and any fronts
produced by the strain rate and restrict ourselves to the fronts explored in

the experimental work of Griffiths and Linden (1981). The basic state will
be geostrophic, so kinetic and potential energy will be available, with the

* Coriolis force opposing the instability. Consider the simplest possible
physics, two homogeneous layers of constant but differing densities.

A"~0

Assume that the horizontal scale of the motion is much greater than the
vertical scale, so the hydrostatic balance holds (this will not be true for a
horizontal gravity current). Then V *= 0, so horizontal velocities will
remain independent of z if they are so initially, which we take them to be.
This represents a gross simplification of the vertical problem.

L. The horizontal momentum equations and the depth-integrated conser-
vations of mass equations are

..-............-.. ..... . .... S -
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.1*

Ui (2
kt v,(. l (3)

These are still very nonlinear and numerous. We further simplify by taking N,
h2 >> hl. Then the flow in the lower layer is small, since a mass flux

condition gives ulhl-u 2h2 , and we take it to be zero:

u . - ,.1  p. = o(4)

Here we have thrown away a layer that we know is important to baroclinic

* instability, so the theory we come up with will have gaps. (We are also

* avoiding the exact physics of the corner where the interface surfaces, where
dissipation and other effects may be important.)

The hydrostatic equations can be integrated to determine Pl, taking

p = 0 (or any constant) at the surface and z f0 at the bottom:

Layer 1: - 1' .

Interface: , a1 -,

~ p. i~-~ tIE(6)

Layer 2: 11-0.

p2 = I ,6 - .( - - (7) "-

Then eq. (4) implies

(8)

The horizontal gradient of Pl is

(9)

where

(10),." )-;-9-...
. . . . . **r

- . - - ..'" .".- " - , " - ,,.. ..
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Is the reduced gravity. Dropping the subscript l's, the upper layer equations
become

ut + uux + vuy - fv - -g'hx  (11)

vt + uvx + VVy + fu = -g'hy (12)

ht + V.(uh) = 0 (13)

These are the nonlinear reduced gravity shallow water equations.

Let's briefly review the properties of these equations. Linearizing
about a basic state h = ho, u - v 0 gives

ut - fv = -g'hx  (A)

vt + fu = -g'hy (B)

ht + ho(ux + y)= 0 (C)

A vorticity equation can be formed from the first two,

(B)x (A)y> (vx - uy) + f(ux + vy) = 0
t

(taking f to be constant here) and, with the third, a potential vorticity
equation,

(Vx - uyfh) =0
h t

The terms multiplying f are the stretched planetary vorticity terms; the ,
velocity curl is the relative vorticity. Rotational gravity waves (Poincare
waves) are solutions, as are planetary waves if f is not constant. A - -

nonlinear potential vorticity equation can also be derived:

S -_ _ = 0 (14)

so that potential vorticity is conserved following the motion. This allows a
useful simplification: one nonlinear equation can be replaced by eq. (14)
with a simple value for the potential vorticity, for instance, zero or any
constant. However, conclusions drawn from such special cases may not be valid
for the general case.

* Now, let's get on with instability. Consider a front, which we define
as somewhere where the interface hits the surface and the upper layer depth
vanishes. To get a simple solution, consider a steady mean flow with no

.* variation in the x-direction,

. = (y), 0 0, h = h(y) (15)

The flow must satisfy eqs. (11-13), namely, the geostrophic balance must hold:

f; - g'h (16)
y

r°

. . . . . . . . . . . . . . . . . .. . . . . . .. !
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It is useful to nondimensionalize the equations before proceeding with the
analysis. Choose

depth scale H, maximum depth of upper layer .-n-p
y-scale a = / deformation radius

u-scale , internal wave speed

x-scale a'_ f , nondimensional and arbitrary 27.1

v-scale F",

t-scale

The x-scaling anticipates the long-wave approximation in the
x-direction, but at this point it is merely a nondimensionalization. The
scales for v and t are obtained by requiring all terms in the continuity
equation to be of the same scaled order. Thus, eqs. (11-13) become

ut + uux + vuy - v - -hx (17)

2 (vt + uvx + vvy) + u = -h (18)
y

ht + (uh)x + (vh)y - 0 (19)

The scaled potential vorticity equation is -.

For 1 < 1, we expect the geostrophic balance downstream (u -hy), though
we may not get it.

Consider perturbations to the undisturbed mean flow

Z(y) - (y) (20) I
y

of normal mode form

A% A

(u', v', h') f (u, A, )ei(x-ct) (21)

Note that f has now taken on the role of a wave number. Substituting these
into eqs. (17-19) and dropping the hats, we obtain

(a - c)u + (1 - Uy)iv + h =0 (22)

u + E 2 (a - c)iv+h 0 (23) "

hu - L (iv;) + (a-c)h =0 (24)

dy

and defining V = iv will get rid of the i's. (This suggests that v is out
of phase with u,h. However, c may also be complex - in fact it must be for

instability!). Eqs. (22-24) are three equations for u,v,h and the eigenvalue .

c. Boundary conditions are also needed. We consider three possibilities:

- . ...... ... ... . ~ . .. * *. Y~

. . . . . .4
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Requiring the disturbance to have no outgoing or incoming energy flux in this
case gives u,v,h- O as y- + o or y-b- ;

(ii)

X=Y" _a wall at y yw, so no normal velocity
requires v(yw) - 0;

Y=.

a front at y = yf, where h(yf) 0.

Mathematically, eq. (24) is singular at y - yf in case (iii), and we require
f* a regular solution. Formally, we must drop the linearization for the moment

to get the condition at the front. The front is defined by

h - 0 ony = yf +M y (x,t) ..

where #<4 1 assures the position will be well defined (i.e. not multi-
valued), and we write

u u + .Au'v ff v ' -"-
h h + h

The front is a string of material particles, so"( A7 / f + .V''-

Then
A " :.k t ti2y.) + ,..

The condition that h vanish at the front becomes

, +74 1 ' .so -Y+Y

" Solving for y and replacing it in the expression above,

or v" , ) - y (y) )
.. .F ( L ). .
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This is exactly eq. (24) expanded and evaluated at Y 7Yf, where h 0, 6"
so the condition says that eq. (24) is well-behaved at the front. 4-

In general, the problem posed by eqs. (22-24) with boundary conditions
is analytically intractable. We can get solutions on machines using numerical
integrators, zero-finders, etc. But solving one problem gives no information
on another. In particular, there are no known necessary conditions for -
instability such as there are for quasigeostrophic instability theory (i.e.
the gradient of potential vorticity must vanish somewhere). What I'd like to
develop here are some analytic statements which can be made about the
instability of a one-layer frontal system. Specifically, we can deduce:

A 11i, the two-front case is always unstable to long
(ii 7waves (Griffiths, Killworth, and Stern, 1981)

the coastal current is unstable to long waves.010 if the potential vorticity increases towards

the wall (Killworth and Stern, 1982)

(iii) the isolated front is unstable to long waves if'J&
Z ,i.e. if the 4

front is sufficiently "narrow" (Killworth, 1983).

The short wave modes around the front are not understood in any of these
cases. The full two-layer problem is still an area of active research.

Consider the two-front case for zero potential vorticity. Since the
.. mean potential vorticity vanishes,

1 -1 1 + h y y = 0 - -

and

y, -1- y2 /2 (25)

so h vanishes at y - F216 has been scaled to equal 1 at maximum). The
depth is symmetric, the flow antisymmetric.

Q09

. The perturbation potential vorticity must satisfy

" L: :V (26)

Using eq. (26) instead of eq. (23) and noting that 1- Uy -0 in Eq. 22, we

get

- c)u + h -0 (27) .

hu- (Vh)y + ( c)h 0 (28)

Uy in6 2V (29)

.
o. 

.-.. . .
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One equation for u can be obtained by eliminating h and V,

(huii)c - - 0 (30)

with the boundary condition that u be re ~lar at y - .
Eq. (30) can be integrated from y %r -4 to y P2 ~ to obtain 0

S~ )h(I-C)2] udy - 0 (31)

from which we will be able to get a quick answer using a power series.

Notes Submitted By
Roger Samelson

L
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LECTURE 8 S -4

Equation (31) derived in yesterday's lecture does not have any known
algebraic solution, so far as I know. For small 6 we may try to expand the
solution in powers of 6 . Doing that we write:

c - c o + E cl + - 2 c2 + ... (32)
u - uo(y) + 6ul(y) + 62 u2(y) +

We also normalize the amplitudes in such a way that uo(O) - I and
ui(0) f 0 for i? 0. Substituting the above expansion into Equation (30) we '

get:

[fl IU-O t(-Co')-e+..,]y O4"rV41E Lo)".o (33) LIL '

To the leading order we have:

(hu0y)y - 0 =? huoy - constant -,

at y ._ / h = 0, so if Uoy is bounded, then the constant is zero, and

u0 =1 (34)

To find co we substitute this into Equation (31) which gives to leading
.1* order:

- ('[ d 0 (35)

Using the expression for h and 9 we get:

- -*-cc) . C O (36)

To order e we get t-(36

(hu2y)y = 0 -- u1 - Constant 0 (37)

since u2  is bounded at y V 1- . There is no new information at this
order. e still have only geostrophic effects, and the boundaries are .

stable. To get ageostrophic effects we have to carry the expansion to order
02:

i fl4%d" Iy -  -  . . .(38) "

*: Integrating we get

u 2 =112 y2  (39)

A1
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To find cl we substitute (39) into (31) and keep terms to order d 2.

2 2

substituting for i, h, uo and integrating we obtain:"z -" 3T 1 = I/,=C,-
so that the front is unstable, even though Qy - 0. The higher order terms

L are easily calculated, and in Figure I the growth rate G ci) is plotted
versus 6. The solid line is the exact numerical solution of Eq. (31). The

r .. line denoted by --- is a Pade approximation to 0 C 12) and the line denoted
by- - is the above found approximation (to 0(6))..

The eigenfunctions for this special case are proportional to eix, so
if we take the real part we have:

Ll~O v-....

Those two modes are plotted separately in Figure 2 (a,b) and together in
Figure 2c.

In the above case we assumed that there was no potential vorticity, and 
M,

this made the problem relatively easy to handle. In general the problem is
r*. quite complicated and in order to see what happens we write Equations

". (22)-(24) as a single equation for h.

P _0

where Q- ( - c 2 + y- 1

We may expect some problems when h = 0, and S - c = 0.

Take now some general depth profile h(y), satisfying h(- L) = 0. The
velocity is given by the geostrophic relation

- -y

Define an integrated depth perturbation (y):

khji + 61/0±1-3 oq 1 -Lr '+C% (40)

Similar expansion holds for c, u and v, and

hn Ony9 (n 0, 1, 2, ... ) (41)

4l .ll ml l -I . . . . - . - . . .'i "" . ...... . .. .. .
" 

- .
I

I
I I

I
I I II 4. . . ..I I I I I . . . . . . . . . . .--Iii ql 

I
I . . . . . . .-.-... , -.... ., - . 1.
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0 0-2 0-4 0-6 0.8 1-0 -1-2

FiOuaRE Growth rate of normal modes with wavenumber c on a current with zero potential
vorticity: -, exact numerical results; - - -, first-order growth rate c'c, given by the wave- * ~
number expansion; .. Padd approximation based on terms up to 0(els) in the expansion.

V, U, V; U

W, X

,P,

* Fi'ouny The structure of the zeroth-order eigenfunctions: (a) the first-order eigenfunctions;
* (b) (from (3.16)) and the combinat ion of these two modes; (c) for c of order one and a flow with

zero potential vorticity. The undisturbed flow ii is linear with y.

'4***5*5 --- ,*.-. - ** *. . . ~ *.*''%*
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From (40) we see that

4' (-L) - 0 (42)

For convenience we scale

£oy(-L) - (-L) (43)
'ny(-L) - 0, p 0

Applying the continuity equation at y -± L and using that V is well behaved
gives

V + (-c) y = 0, (y = L) (44)

Here V = iv is as defined in Lecture 7. Where U - 0, we anticipate a
critical layer of thickness 6 A boundary layer expansion is necessary
there, followed by asymptotic matching across these layers. Following is an
outline of what occurs:

Write c = co + 6 Cl + 6 2c2 + ... and expa,-d Equattons (22-24)
in powers of 6. Also use (40) and (41) to obtain:

0(i - co) un + (l-Uy) Vn +4) ny + An 0 (45)

Un + Bn = 4 nyy (46)

hun - (hVn)y + (u - co) hn + Cn = 0 (47)

for nf- 0,1,2, ... , where An, Bn, Cn contains terms of order up to n-l,
so Ao = Bo = Co =0. From (45) we get:

+81 ((-Cti - -n (48)

where (46) has been used. Substitution of (48) into (47), integration from -L
to y, and multiplication by (l-Ziy)/h gives

- h ",(49)

Here we have used h(-L) = 0. We now proceed to solve (49). To leading

order we have, since Ao = Bo = CO - 0: ...

. : .: -. ' a ....

(i~-~)4~,- UcP~:j 0(50)

V:..- .
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V0 : (1

The set (50), (43), and (44) is an elgenvalue problem for co, and may have i.
many solutions. We chose one specific solution with co real, namely:

Co-0, 410 -h, Vo - , u. - uy, ho -ui (52)

Here Vo is real, so vo is if/2 behind uo and ho as in the special
case considered previously. To order e we have

Al - -Cluo, Bo - 0, C1 -Cl oy (53)

So (49) becomes

; 4 lyy - Uy 0 ly + cl 0 (54)

with the boundary conditions

4" ly 0 at y - -L (55)

and from (44) (terms of order E)

,V1 + u'ly -cl -oy 0 at y - L (56)

This appears to be a well-posed problem for Cl, but in fact it is not so.
Recall that from (48)

= 00, - 4,~- ,d cfrom (54)
I - .'-.

-- ',q-

Using this expression for V1 we see that eq. (56) becomes 0 - 0, so we have
lost a boundary condition. Now Equation (54) has two independent solutions.
One is

4)i- (i.e. zeroth order) (57)

and the other is:

, - (58)

So there is a singularity at - 0.

The solution Equation (58) is well behaved as u approaches zero only if
Uyyc (where suffix c denotes values at the critical layer) is zero.

--. _- . -.-..................... .....
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Otherwise the solution contains logarithmically growing terms. A matching
across a critical layer is necessary, and we write

d 9 T. Jc (59)

Lu~)/ , q>,/ (60) .:: |,,

where w(Yc) = 0 (61)

and we have used Equation (55) at -L in Equation (59). 0( and /5 are unkown
constants. To match across the critical layer we need the behavior of
near y - yc. We write f = y - Yc, where P is small, then:

(62)

1- , f !14 1 LUj. /1C Cii c .
1- o,. -o):

where 0 is some small number, and Zyc = Uy (Yc), etc. Now log (+S)
is well defined, but log (-s) requires a closer look. Near y y. Equation
(54) really is

- clC) 4Kly- Qy 4, ly + c =0-

So when is of order 6 , the 5 term, instead of giving terms like log u,
gives

log(i - lc)'- log( iiy- C c1 )- log4 + log(iiy - cl)

As ,j + ac this goes to log ~ if ii, 70. If Im Cl >0, the path
of u-c looks like:

S 0. .-............

. . . . . .. . . . . . . . . . . . . . . . . . .
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So as -- 2OO we get log(-iyy cl)- log(uyljI ) -ilsgn(uyc)

=> log(-S ) - log 3 - I Tr sgn(Uyc) (63)

c I is still unknown, so we do the order f 2 terms. We have

A2 c ClUl - C2Uo, B2  j2, C2  -Cl - C24'oy.

So the flow becomes ageostrophic at this order. 42 satisfies

,q oi' 64)

and

2 =  2y = 0 at y f -L (65)

At y f L we want 4 2 to be well behaved so it must satisfy:,

(1-j) Jh_ Yq 4 CjP 0at y L

orL

C,4, (L) =-- .lh dq (66)

This is the missing condition for the 0( 6) problem and the only information -
we need from the order E 2 terms. Equations (59) and (60) give 4 1 (y), the
behavior near y - Yc is known so we can match using (63) and then close the r

problem by (66). From (62) we now see that 0 1 and Ply must be
continuous at yc, the log e was taken care of above, and the well-behaved
part of Plyy being continuous. We now match the 0(,62) terms of (62)
for 4 i to find .On the - side we have

-di

This must be equal to the expression on the + side which is ,..-

ld-

So we get:

a -2.4-lI -f r - -- 1

The term inside the brackets { is the Hadmard 'finite part' of the divergent
integral, written " (evaluated by merely substituting in

the end-point values and ignoring the singularity). In order to calculate 5
cI from Eq. (66) we need 4'I(L) which is given by

" t + (68)

- - * . .. *.. . . . ..
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Since 1 (y) is continuous at y -y., the i'itegrand in the middle is
* zero. Using (62) for *~we obtain, after some algebra:

L

PULail- (69)

Substituting this in (66) we then get f or c

- (70)

We now note that:

i) if Ziyyc ,0 (as in the special case done previously) then it can be
shown that Fp / v. o ,so c2 4 0 and we therefore have imaginary

cl. That gives an unstable mode.

ii) if a 0: then c2 is complex and there exists an unstable modeyc I t.b (with the imaginary part of c1 ;P- 0).

We therefore conclude that there is always a growing long wave mode.

We now look at the energetics, or where this mode gets its energy

from. Define a pseudo-energy

E - 1/2< h(u2 + g 2 v2) +h2

where < .> denotes an x-average (i.e. <ab> =1/2 Re <(ab*> ).From

Equations (17-19) we get

at LI_ < hL UV> +{ hv } (71)

Integrate this to obtain

dL
d EdqJL~<~?k (72)

-L
So the perturbations draw energy from the kinetic energy of mean flow through

the mean shear u y. Now we have

<uv> Re Nov'*)v:?e O tLVoA

- eCC; (/ + 0 (6 2 ) (3

-L A (74)

-7-I
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So the perturbation energy is growing. The mass transport in the y direction
(across stream) is given by

That is, the blob gets wider and thinner, so potential energy must be
released. Indeed we have from (13) -.

I+ I)4Vfl,'j-

for the rate of change of mean potential energy. Thus,

f, <- -2¢ < 0 "
.42

So release of mean potential energy is also necessary during the growth of an
unstable mode. However, it can be shown that the total potential energy

remains constant, so the mean potential energy is moved to the perturbation
potential energy. Comparison with experiment shows good agreement for a
narrow current, but poor for wider ones. This might be due to the effect of
the bottom layer.

Other cases can be done in a similar way, but the algebra is more
- lengthy. We will briefly mention the main result below.

i) Boundary current.

In the case considered above, the lowest order instability involved

interactions between both fronts. If we put a wall along the x-axis at y=L,
we may expect that to have stabilizing effects. This is indeed the case.
Recall that it is necessary for c to be complex for unstable modes. In the

expansion c = c o + c I e + ... for the two front problem we found that

C, was complex, but for the case of a boundary current it is the coefficient
of 64 that is the first one to be complex in the expansion. It can be

shown that c has the form

L
-Ci r11- 4 (L) '7

For instability we must therefore have U yy 4 0. That is, at the wall, the
potential vorticity must be increasing toward the wall.

Sii) Isolated front.'

Here it can be shown that there exists instability if 3
rI "

"'" .,
~'-a c
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and C1 has the form

C:; Tra o-a'

The growth rate is therefore very weak. As a conclusion we note that the
assumption of infinitely deep bottom layer may seriously affect our result,
and work is in progress to incorporate finite depth. Nonlinear effects may
also be important.

Notes Submitted By
Gretar Tryggvason
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ABSTRACTS OF SEMINARS

VARIETIES OF OCEAN FRONTS

Terrence M. Joyce

Fronts are regions of larger-than-average horizontal gradients of water

properties such as temperature, salinity, density, turbidity, or color. Some
characteristics of ocean fronts are large vertical and horizontal shears of

currents, high rates of dissipation of mechanical energy as well as
temperature and salinity variance, and high biological productivity or large
gradients of productivity. Fronts are diverse in characteristics and do not

possess all of the above characteristics. They vary in spatial dimensions
from river plume fronts with horizontal changes on the scale of a few meters
to open ocean, mid-latitude fronts having significant property changes on

scales of 100 km.

A number of "types" of fronts were presented which are more clearly

separable by dynamical origin rather than physical scales of variability.
While not exhaustive, the following list contains most of the fronts found in

the ocean:

Type of Front Forcing Mechanism

River Plume discharge of fresh water
Shallow Sea wind or tidal mixing in shallow water
Shelf Break wintertime convection over shelf
Coastal Upwelling wind-driven Ekman flux

Mesoscale eddy-induced convergence or confluence
Rings instability in major currents

Western Boundary Fronts gyre-scale wind and thermohaline forcing

Zonal Fronts Ekman convergence in subtropics

Sub-surface Water Mass tracer flux & sharpening by mean currents
Benthic variable bottom mixing

Other

Some fronts do not clearly fall into the above breakdown. The polar

front and sub-Antarctic front are associated with the zonally flowing
Antarctic Circumpolar Current, which is forced by large-scale winds and

thermohaline processes, yet contains fronts or geostrophic jets within its
domain. Similar characteristics are found in the zonally flowing Kuroshio
Extension.

Because fronts are regions of enhanced gradients, stirring and mixing

S.4 phenomena are readily apparent and easily observed in some cases by satel-
-J lites. Since the warm, tropical regions gain heat on average from the

atmosphere and the cold, polar regions lose heat, the ocean must be the

dissipative. Fronts are regions where most of this thermal dissipation occurs.

°' , " .. J

- 1 '? -~*. - i i ... I |.- , --. . .....
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LABORATORY EXPERIMENTS ON INSTABILITY
AND TURBULENCE AT OCEAN FRONTS

Ross W. Griffiths

Two relationships between baroclinic instability and density fronts
are illustrated by early qualitative experiments of Fultz (1952) and Faller
(1956). Fultz created a long density front in a rotating two-layer fluid and
observed the growth of frontal waves which tended to break up the front, while W

Faller shoved that a smooth horizontal temperature gradient in rotation, with
an associated geostrophic shear, could be unstable to baroclinic waves and

"- that these waves lead to the formation of relatively sharp property gradients
(fronts) on the scale of one wavelength. The latter approach has been refined
in the differentially-heated rotating annulus experiments which have been used
to investigate many properties of baroclinic waves (eg. Hide, 1958; Douglas,
Hide, and Mason, 1972; Hide and Mason, 1975). An analogous two-layer system

• "in which a vertical shear is driven by a differentially rotating lid (Hart,
1972, 1979, 1980) has also been used to study stability conditions and the
behavior of finite amplitude baroclinic waves in a flow that satisfies the . .-.

quasi-geostrophic approximations.

Continuing from Fultz's experiment with a sharp density front, Saunders
(1973) released a cylinder of heavy fluid on the bottom of a rotating layer of
less dense fluid. The resulting vortex was unstable and the azimuthal
wavenumber of the growing waves depended only on the parameter

e= g'H/f2R2, where g' g4e/je , H is the fluid depth, f is the Coriolis
parameter, and R is the radius of the cylinder. Griffiths and Linden (1981a)
extended these measurements, placing the vortex on the free surface to reduce

-" frictional effects and adding another variable - the ratio of layer depths

. hl/h 2. Instability depends primarily on release of potential energy
when the depth ratio is small (and e is small) but kinetic energy from the

" horizontal shear dominates when y<0.1. At large disturbance amplitudes no
amplitude vacillation or equilibration occurs (as does in the quasi- I
geostrophic annulus models). The waves grow monotonically and give rise to
dipolar eddy structures, or "modons", each modon consisting of an anticyclone
containing upper layer fluid from the original vortex and a cyclone extending
throughout the depth of the fluid (see also Flierl, 1979; Stern, 1975). These
are stable, long-lived structures which eventually spin down due to the bottom
friction or interact with neighboring modons. Further experiments with an

"isolated" front around a very large buoyant blob and with a long front at the
edge of a "coastal" current exhibit the same behavior, with large amplitude
waves "breaking" backward and giving rise to vortex pairs (Griffiths and

Linden, 1982). The wavelength in all cases scales either with the deformation
-* radius (when the horizontal length scale of the flow is much greater than the _,

deformation radius) or with the (smaller) current width (when the flow is
narrow). Ekman dissipation can also influence the conditions for instability

*: and the wavelength observed (Griffiths and Linden, 1981b; Linden and Van

Heijst, 1983).

Similar laboratory arrangements can be used to obtain estimates of the
horizonal spreading or cross-frontal mixing due to mesoscale baroclinic

¥. turbulence (Griffiths and Hoffinger, 1983b). The initial frontal instability
creates a zone of turbulent eddy motions near the front, and this turbulence
tends to spread in both directions. The transport of buoyant fluid in the

* . . .. . . . . . . . . . . . . . . . . . . . . . -..* '
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direction normal to the original front may be parameterized in terms of a
diffusion coefficient Or which scales with the turbulence intensity u'l, where
u' is the r.m.s. turbulence velocity and 1 is the dominant energy containing
length scale. The experiments indicate that 1 scales with the deformation
radius l 7e'/f, u' scales with ,/'H and tz4 g'H/f. Another observation is
that all of the stratified fluid (to one side of the front) eventually
contains eddy motions, and these will act to keep the fluid away from the
front relatively well mixed in the horizontal.

Another rotationally-dominated instability can occur when a current
• -(perhaps on an abyssal slope) is bounded on both sides by a density front

(Griffiths, Killworth, and Stern, 1982). So long as the current width is not
. too much greater than the deformation radius, the current tends to break up

into a series of large anticyclonic eddies that are advected with the mean
flow. This instability would occur even if only the one layer of fluid is
present, and the theoretical analysis represents a first attempt at

* understanding the stability of fronts without making the quasi-geostrophic
approximation (see also Killworth and Stern, 1982).

Other mechanisms for instability and mixing, some of which do not rely
upon the presence of rotation, are also likely to occur at fronts.
Kelvin-Helmholtz billows form if the local Richardson number is sufficiently
small and will act to produce marginally stable density and velocity
gradients. These billows will occur, for example, whenever a fluid of one
density intrudes into another of different density as a high Reynolds number
gravity current. In a rotating system the rotation constrains such a current
to intrude along a side wall (Stern, 1980; Stern, Whitehead, and Hua, 1982;
Griffiths and Hopfinger, 1983a). Shear instability can also occur at very
much larger Richardson numbers if the density gradient also supports an
angular momentum gradient (McIntyre, 1970). This is the case beneath a Gulf
Stream ring or any mesoscale eddy. Instability then relies on the different
rates of diffusion of density and momentum (Prandtl number not equal to one),
and experiments indicate that a series of layers and sharp interfaces will -
form (Baker, 1971; Calman, 1977). This quasi-horizontal layering is somewhat
similar to that which results from thermohaline double-diffusive convection,
another mechanism for mixing whenever there are superposed horizontal
gradients of temperature and salinity at ocean fronts (Ruddick and Turner,
1980).
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SPIN-DOWN, CROSS-FRONTAL TRANSFER, AND THE ROLE
A OF FRONTS IN DIAPYCNAL MIXING

Christopher Garrett

Consider the sloping interface between two fluids of densityp and
/0 +O0 (Figure 1). The lower layer is assumed to be at rest, the upper in
geostrophic balance with an along-front speed V = g'f-l( 1 =-). If we
now consider interfacial friction, internal Ekman layers lead to lateral
collapse of the front.

tJ%-
i - &:Z Ekman flux-.*/ " ..

Figure 1

For linear friction (Tr= -C V), the depth h(x,t) of the upper layer -

satisfies the diffusion equation &/ t = k -k/? where
J(= \5' F-* .With quadratic friction, which might be more appropriate for
an oceanic front, the diffusion-like equation is lk/ , .

with IC- '- g- . This has a similarity solution (Garrett and Loder,
1981) which shows that the frontal interface meets the free surface at a p."

finite x and advances like tI/ 4, compared with t /2 for the linear case.
For the axisymmetric problem the radial scale increases like t /5 with
quadratic friction.

With continuous stratification (Figure 2) we analyze

.-.

" -

Figure 2 3

the effect of weak internal dissipative forces on a front that is otherwise in
geostrophic balance. If V, H, L are typical speed, vertical and horizontal

scales, we can characterize the front by two independent dimensionless

- .7;
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parameters: the Rossby number Ro = V(fL)- I and the Burger number
S . NgH2 (f2L2 )-', with No a typical Vaisala frequency. It
should be noted that the change in isopycnal depth over the width of
the front is of order RoS-1H, so that we require Ro- S on geometrical
grounds. Also, the Richardson number N2/V2 is of order SRo- 2 .

Subject to the assumption of small Ekman number, the governing
equations are

4 ~ (2)

Terms : may be neglected if Ro <K4 , (1)ifRo.<S (i.e. if the isopycnals do
not change their depth significantly). We then have

e
+ A' 4, + V, L-, (4) .:. -.

as the linearized potential vorticity equation (e.g. Muller, 1976), if we
assume N2 and Av etc. constant, for simplicity.

The decay trajectory in (Ro, S) space depends on the relative magni-
tudes of the coefficients on the right-hand side of eq. (4). If, for example,
Ah/Av Kh/Kv = N2/f2 and Ah/Kh - Pr, we have

6f Ak b- + y~-(./Lj~ (5)

and the trajectory is Ro PC S3/2 (in order to conserve total buoyancy) until

S = O(Pr-l), as shown as trajectory ( in Figure 3.

t,.S

.PLO

" Figure 3 .,,

A--.-.
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The decay is by horizontal mixing of momentum (V , .V.) for S -,. 1 and .a .
lateral collapse (fu = AvVzz) if S < 1.

On the other hand, if Ah = Kh - 0, the front still follows
trajectory Q for S - 1, but trajectory () (S increasing) if S t 1.

,I. -j

Our understanding of frontal decay may be extended into the region - .
Ro c-c 1 and S ccl, but no longer Roc.c, S, for the case of Ah = Kh = 0 r
(Garrett, 1982a). The term ubx can no longer be neglected in eq. (3), so
that it becomes .

6t 4,4 k ) (6)

(and remember bz = N2 ). Changing to density coordinates

r. leads to

- (8)

so that isopycnals diffuse laterally, with a diffusivity (N2/f2)Av,
until S is about Pr-.

A rough comparison may be made between the lateral fluxes due to the
viscously induced mean flow and eddies arising from baroclinic instability.
For the two-layer case with quadratic friction the flu Fn of the upper -

layer due to a quadratic interfacial stress is C.- -' _q -
with C, 2 4 x 10

-4 (Csanady, 1978), whereas the flux b associated with
baroclinic eddies may be given by

according to Pingree's (1979) extension of Green's (1970) work. The formula
seems to be in reasonable agreement with eddy counts at some shallow sea
fronts (eg. Pingree, 1979; Garrett and Loder, 1981). The ratio Fmf/Fbe is
of order I at these fronts; this is probably a coincidence. On the other
hand, it is possible that initially stable isolated lenses start to spread
viscously, then lose the spread fluid by baroclinic instability so that
Fef-Fbe. Baroclinic instability calculations need to be done for
viscously spread interface profiles of axisymmetric blobs.

For diffuse fronts the lateral spread due to viscous forces may be
parameterized by a lateral diffusivity (N2/f2)Av, which is typically
negligible in the deep ocean compared with the parameterization by Stone 'K. ,

(1974) and Bryden (1979) of the effect of baroclinic instability. They take a
diffusivity Khbe = CH2Nf-IVZ (a constant C times a mixing length
Nf-lH times a typical speed HVz) with Vz of course related to the
lateral density gradient through the thermal wind equation. Stone (1974)
proposes C= 0.14, Bryden (1979) finds C - 0.28 from Drake Passage data.
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One serious implication of this parameterization of baroclinic eddies
is that it implies a diapycnal mixing coefficient of Khbe x (the isopycnal
slope) 2 , with perhaps an extra factor of 1/2 to allow for the trajectory of
the water in the wedge of instability. The number is large for Bryden's
(1979) data, several times 10-3m2s -l. Clearly we must take seriously
the diapycnal mixing due to baroclinic eddies.

."k.

A rather different problem connecting horizontal stirring and diapycnal
mixing arises from consideration of the thermohaline fronts that should

*. develop as temperature and salinity anomalies are stirred by mesoscale eddies
*- ~.on isopycnal surfaces. By combining the formulae of Ruddick and Turner (1979)

and Toole and Georgi (1981) on the thickness and growth rate of the double
diffusive intrusions that develop at such fronts, and making various other
arguable assumptions, Garrett (1982b) derived a formula

/4 Ps io- S(-3  (10)

for the net vertical eddy diffusivity of salt, in terms of the large-scale
gradient Tx of salinity along isopycnals. D is the typical diameter of a
mesoscale eddy. The eddy diffusivity for heat is typically negative, but with
observable consequences being unlikely due to the dominance of down-gradient
diffusion along isopycnals.

Values for Ks are small except in a few regions of large Sx and
weak stability (small N2). The theory is testable in the sense that it
predicts typical intrusion thicknesses, and the frequency with which they
should be found in CTD casts.
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BAROCLINIC INSTABILITY OF OCEANIC FRONTS

Lee Branscome

ow.
Oceanic frontal regions have strong vertical variations of the

geostrophic mean current and stratification. In particular, the baroclinity
of major current systems and the subtropical convergence fronts is concen-

trated in the upper 1000 m. Large variations in N2 are also seen, .-

especially if a permanent thermocline is present at depth. The influence of

,- these strong vertical variations of the mean state on baroclinic instability

is examined in a continuously stratified model in which 'a l and N2

are functions of depth.

We start with Boussinesq, f-plane equations and consider only depth

dependence in the mean current velocity and stratification. In the context of

* Killworth's lectures (this volume), we examine the baroclinic stability of a
" wide symmetric jet. The &-effect is weak except in the weak baroclinic flow

of the open ocean. A single equation in the vertical structure of the

vertical velocity is formulated. Before making the quasi-geostrophic

" approximation, we note that nongeostrophic instabilities are possible for low

Richardson number (Ri) (Stone, 1966).

Considering quasi-geostrophic perturbations (Ri *o >1) we make a
* long-wave expansion (L P-NH/f) and find the lowest order phase speed is given

by the vertical mean of the current velocity. The growth rate is proportional

to mean baroclinity. The waves have maximum amplitude and phase shift where

the velocity and shear are maximized. The most unstable mode is given by a

vertical averaged radius of deformation weighted to levels of strong shear and

away from boundaries.

Numerical solutions show that short waves are destabilized when the

potential vorticity gradient is nonzero. These short modes are trapped near

the surface. A numerical result confirms that all wavelengths are independent
of stratification below the levels of strong baroclinity.

An idealized oceanic profile which includes a strong main thermocline

and baroclinic shear maximized in upper layers is examined. The potential

vorticity gradient has a sign change at the thermocline and thus we find two

types of modes, an external surface-trapped mode and a deep internal mode

which becomes trapped at the thermocline for short ,,.velengths. An equivalent b
two-layer model only captures the longest internal modes. The surface-trapped
mode has a phase speed given by the near-surface mean velocity, whereas the

long internal modes have phase speeds given by the vertical mean velocity.

Similar structures and behavior of modes are seen for realistic

profiles. Evidence for surface-trapped modes in the Kuroshio Extension

(Bernstein and White, 1982) is given. Growth rates and phase speeds for Gulf

Stream meanders (Watts and Johns, 1982) are compared with the instability

calculations.

V.
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COMPUTING FLOWS WITH SHARP INTERFACES USING BOUNDARY INTEGRAL METHODS

Hassan Aref

Some sharply stratified flows in which certain physical properties

(such as density or viscosity) have jump discontinuities at all interfaces
admit representations in terms of the dynamics of generalized vortex

sheet(s). Boundary integral representations of the entire flow field may be
formulated for several well-known stratified flow situations including the
Rayleigh-Taylor and Taylor-Saffman instabilities and the problem of wave
motion at a density interface. A review of the origins of this type of r
representation was given and results from several numerical implementations

were shown. It was stressed that whereas the theoretical formulations go back
at least a couple of decades, the implementations are of more recent vintage. ,-- '-

Technical issues that arise were mentioned. A detailed discussion of finite I
amplitude motion in sharply stratified Hele Shaw flow was given following
Tryggvason and Aref (1983) and Aref and Tryggvason (1984). A simple
demonstration experiment was shown.
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I AMPLITUDE EQUATIONS FOR FINITE AMPLITUDE BAROCLINIC WAVES

Joseph Pedlosky

• ". ...

A finite amplitude theory for the dynamics of unstable baroclinic waves is P9.
required if we try to answer the following, very fundamental questions:

(1) Does an unstable wave equilibrate? If so, what is the mechanism
for equilibration?

(2) What is the long term behavior of the wave subsequent to equili-
bration?

(3) What is the appropriate selection principle which determines
which wave is observed in finite amplitude (e.g., the wave of
maximum linear growth rate?)

(4) What alterations of the basic flow, which supports the wave, oc-
cur as a consequence of energy and potential vorticity transfers?

In these lectures, a brief review is given of recent work in the weakly

nonlinear theory of unstable baroclinic waves. In all cases the model which
is used is the finite amplitude extension of the traditional two-layer model
for bazoclinic instability (Phillips, 1951) with the further addition of Ekman
friction. In all cases the 1-effect has been ignored.

The first problem described the finite amplitude evolution of a single wave
under conditions where such a wave is slightly supercritical with regard to the
linear theory's threshold for instability.

In a channel of width L, rotating at angular velocity f/2, subject to grav-
ity g, the two layers, whose densities differ by Ap and whose undisturbed
depths are each D, will support an instability if

f2L2  2 2ra2 a 2 "

Fa + (1) > (1)
Po (U1- U2)

2 2 2
where a = + M w

is the total wave number of the perturbation. Its zonal wave number is k/L.
The parameter r is a nondimensional measure of the potency of Ekman dissipa-

tion, operating equally at rigid upper and lower boundaries while (U-Lj)

is the nondimensional, vertical shear of the basic state.

For small supercriticalities

F F F4 + << «

. standard multiple scaling tcchniques (Pedlosky, 1970) yield the amplitude evo-

lution equations

laid.. ,



-72-

dA + 3 dA 12

A + A sin 2miy --7 *dy = 0 (2) Im
o ay ., ?

I2 a2 + y J I A 2+ 2y JA1 2 sin 2.(3)

-T ay 2 - 2 1.

The time variable, t, is scaled by the small linear growth rate, a. A is
the amplitude of the wave. %p(y,t) is the correction to the vertical shear
of the zonal flow. The key parameter is

r linear e-folding time of instability
Y= = Ekman spindown time

For y = 0(l), the wave monotonically approaches a steady state with
IAI = 1 (the phase depends on initial data). The mechanism for equilibra-
tion is entirely due to wave-mean flow interaction. In particular, potential
vorticity fluxes by the developing wave alter the relative vorticity of the
basic current in such a manner that the instantaneous mean flow profile becomes
a stable one.

For small y, (S .12 - although this depends weakly on aZ), the solu-
tions for A are simple limit cycles which describe a perpetual amplitude vacil-
lation. As y is increased from small values, a sequence of more complex
vacillations are found by numerical integrations of (2) and (3) (Pedlosky and
Frenzen, 1980) through a sequence of period doubling transitions. Beyond the
limit point of these transitions (which for a2 = 21r2  occurs at y
.1307) chaotic, aperiodic behavior is found. For large enough y (= .18)
the eventual state of the wave amplitude is steady. Within the aperiodic
parameter domain, isolated instances of elegant periodic behavior have been
found numerically.

When the initial state consists of several wave numbers, modifications of
the above theory are required. The waves will each compete for the available
potential energy in the shear flow and may also interact. A modification of
the theory described above can be most easily carried out for small friction
near the minimum of the critical F curve as r + o for long waves [k = 0)
A'/Z)]. In this limit a set of amplitude equations for Ak (the ampli-
tude of the plane wave of zonal wave number k) can be derived in the form

dk 2  sin 21ry dy 0 (4)k~ i k A qk 2dt 2  2 - 2 o ..

.2 'I 2 sinS 2 sin 2 + 2n E (5)

J J . ,,-

3T . 2 *dT
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where k is the (scaled x-wave number. The parameters are

raa 1 _ A u - 2)

12

.

(where k. is the dimensional wave number), and

E = E iAk1
k

-. 2  2 2--q(k) = k2 "2k

A study of (4) and (5) reveals the following (Pedlosky, 1981). The linear
growth rate of disturbances has a peak at k = I. In a competition among waves,
the linearly most unstable wave will dominate the field of waves only briefly.
The asymptotic wave state is quite dramatically different. The linearly most .
unstable wave gives way to a wave of smaller k. In particular, the asymptot-
ically dominant wave is that wave whose k is closest to the k which maximizes

-: .q(k), i.e., k = ri Since n must be < 1 for linear instability, this

requires that a wavelength shift to longer waves occurs in finite amplitude.'
The wave which is realized in finite amplitude (i.e., the wave of maximum q)

*is the wave which, were it alone, would have the maximum steady state ampli-
tude. The linearly most unstable wave .(k = i) tends to equilibrate at a smal-
ler amplitude. This leaves the mean field still unstable to longer waves which
grow inexorably and reduce the available energy in the mean state below the

* .. level required to maintain the k = 1 wave which eventually is extinguished.

The longer waves are more sensitive to friction. Hence the theory implies
that as the supercriticality is increased the first effect is a transfer of

*.! states to longer steady waves. When the minimum zonal wave number consistent
* with the geometry is then achieved, a further lowering of dissipation (or

increase in shear) will initiate the period doubling described earlier. Hart
(1981) reports a similar nonlinear transfer to longer waves in a somewhat dif-
ferent two-wave model and also reports qualitative agreement with his experi-
ments (references to these interesting experiments may be found in Hart's
paper cited above).

The final problem described in the lectures involved a return to the exam-
ination of single wave dynamics. The new feature in this example is the choice
of unequal Ekman friction coefficients for the two layers. This will occur,
for example, if one layer (say the upper) has a free rather than a rigid sur-

-. face so that Ekman friction is absent. The resulting problem has several
interesting features.

- - - - - * . "....

: ".,,__..._""- -.. .. -.. - " '"l. . ,'. . ..... . . . . . .... . . . . . . . . . . . . . . . . . . . . ..i" 1-. " ,. .-- i/-.-' :.'- .: ,,. : -"- '._- . -. . t -- " : ;- "/."-," .-



-74 - -'

(a) The inequality of the friction coefficients destabilizes waves MP

which are stable in the symmnetric friction case.
(b) In the limiting case of zero upper layer friction, no true

neutral curve exists. '4*

(c) Nevertheless, for small friction a qualitative enhancement of K
the growth rate occurs at the inviscid threshold (F = a 2 /2)
which arguably remains the physically meaningful wave.

(d) The absence of a true threshold renders the normal asymptotic
expansion techniques formally useless.

'I...

Heroic methods must be used. At this point we are guided by Virgil (Dante,
1300) and Spiegel (1981). The inviscid neutral curve (F = a 2 /2) is used as a
pivot point for the perturbation analysis. Two long tiie variables are intro-

* duced. On the first time scale the destabilizing role of friction is included.
* A second, longer time scale is introduced to capture the dissipative role of

friction. The resulting sequence of mathematical problems is intractable. if
the sequence of asymptotic equations is recombined, a single amplitude equation
is constructed. The method of construction has been called the method of recon-
stitution (Spiegel, 1981). If this route is followed, the amplitude equation
(Pedlosky, 1983) becomes

d dA 3 cniue foB rmla 2 *)sees.-
z .A + aft -2---+ q r+4a B sn ydyl

dt 0 3y (6)

+ A teond)/4q + sin 2wy a - td s

S2* 2 2
a a T 2 (y~2'a T (1Y a *
t a2T2 2 2 2

ay3y ay

a~ITt si ~ { i (Yi+Y 2) JAI}

ah seue2 of 12 aypoiea tin 2s Beobnd aY 2 siga 2mltd eqato .

3 2 F

Awhere WT and + are the corrections to the baroclinic and barotropic
zonal streamfunctions. The parameter q = A'/ 2 fa. If y, = y y then _pu, ii-
tially zero, remains zero and (7) and (8) reduce to (2) and (3).

If (YvYn) is 0(re), (7) and (8) could be derived by standard multiple
scaling expansions. It is worth noting in that case that when Y , yz the

- -....-
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chaotic behavior found by Pedlosky and Frenzen (1980) disappears (although
it will remain if (yL-yz)/(yl+y2) is very small, i.e., - 10- ) in favor of
the re-emergence of steady solutions.

If y, + 0, the wave amplitude, after an initial equilibration at 0(I) amp-
litude levels starts a slow but persistent decline to zero! The reason is

pp. quite simple. Summing (7) and (8) shows that as y, + 0, there is no dissipa-
tive sink of zonal flow potential vorticity in the upper layer while there
remains a wave-induced flux convergence of potential vorticity porportional
to Yz IAIZ. In order for the mean flow to remain finite, the long term aver-
age of the wave flux must remain finite or equivalently

2Illm IAI--> 0¢T ~~t -- '> t -• "

Numerical integrations of (6), (7) and (8) yield just such behavior. The
fmean field, however, is altered by the ephemeral wave. If a slight dissipa- *

tive sink for potential vorticity, too small to affect the above dynamics is
added, the basic flow will relax to the initial state. It is hypothesized
that this will lead, in the presence of background noise, to a stochastic
sequence of episodes of baroclinic wave growth and decay. This model also
emphasizes the vital role dissipation plays in the nature of the long termN /behavior of the wave amplitude.
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INERTIAL EFFECTS IN FRONTS
(WHY DO FRONTS BECOME SHARP?)

Francis P. Bretherton

This lecture discusses processes giving rise to sharp fronts from the
point of view of a meteorologist, assuming an f-plane, Boussinesq frictionless
fluid and geostrophic balance for the cross front pressure gradient. It will
also be assumed that conditions are effectively uniform along the front (an
important restriction that is often violated in practice, leading to
complications in classifying fronts). Large-scale horizontal gradients of
temperature can be intensified by geostrophic confluence or by differential

advection of a long front temperature gradient. In a stably stratified fluid
vertical motion generally acts to reduce contrasts.

Intensifying cross front contrasts due to large-scale confluence or
differential advection are associated with an ageostrophic cross front
circulation, which can at each stage be described diagnostically in terms of
the potential vorticity distribution. As the local Rossby number approaches
unity, the redistribution of potential vorticity by this ageostrophic
circulation dominates, leading to discontinuities in a finite time. This
process is illustrated by solutions of the Eady problem, reinterpreted to
allow for ageostrophic effects.

VORTICITY FRONTOGENESIS IN SHEAR FLOW

Melvin E. Stern

A quasi-laminar flow with a parabolic velocity profile emerges from a

round nozzel at moderate Reynolds number (102). The outflow is then
increased so that the centerline velocity increased from V to 7j+. The
fast-moving parcels catch up (converge on) the slower ones, producing a
vorticity front in the intervening region. A "shock" joining theory predicts
that the front propagates with speed ('7_ +VT+)/2, and the amplitude of
the shock in its initial stage of formation is also given. This work is part
of a study (Stern and Paldor, 1983) of the strong nonlinear interactions in
coherent disturbances of a shear flow.
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DYNAMICAL GENERATION OF EASTERN BOUNDARY CURRENTS

George Veronis

Bou. ary currents near the eastern sides of the ocean basins tend to be
weaker and broader than those on the western sides. They exist along the
eastern sides of all the oceans and may be equatorward or poleward depending

on latitudinal position and depth. Theories for eastern boundary currents
have mostly been based on longshore winds and upwelling dynamics. Yet from

their ubiquity and relatively large scale they appear to be an integral part
of the large-scale circulation of the oceans.

Roger Hughes and I have developed models showing how eastern boundary

currents can be generated dynamically by the contribution of kinetic energy to
the Bernoulli function. A sufficiently strong equatorward flow near the

eastern boundary will flow in the direction of decreasing pressure gradient.
If the latter is related to the depth of the layer through hydrostatic
balance, the layer depth will decrease, thus generating anticyclonic
vorticity. Models have been developed in which this induced anticyclonic flow
requires a large flow near the eastern boundary, i.e. an eastern boundary

current.

The basic idea has been applied to a simple thought experiment and to a

laboratory model in which fluid is sucked out of the apex of a pie-shaped

basin. A model has been developed in which the flow in the intermediate layer
of a three-layer ocean is poleward near the eastern boundary and fans out into

the interior to become a westward, equatorward flow. This configuration is
intended to model the flow in the region that Luyten, Pedlosky, and Stommel

(1983) call the shadow zone near the eastern side of the ocean. The existence
of the eastern boundary current allows one to relax the unrealistic condition
of zero depth of subducted layers along the eastern boundary itself. Since

the model requires nonlinear dynamics only in the boundary layer, it can be
appended to the interior of the large-scale circulation model with subduction

*and the inviscid geostrophic dynamics of the latter can be preserved.
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AMPLITUDE EQUATIONS

Edward Spiegel

In the 1981 proceedings, Pierre Coullet and I described a way to find
amplitude equations for systems with competing instabilities that we later V.
wrote out in extenso (1). There is still much to be said on the topic, and
this talk is really an account of various improvements and extensions that we
have worked on with Alain Arneodo, who passed through here in the first week
of this course. Let me 'remind' you of the original scheme.

We want to describe the derivation and the solution of nonlinear
amplitude equations for fluid systems in physical conditions not far from
marginal stability. We lay stress on polycritical conditions in which the
spectrum of the linear stability theory has multiple roots with zero real
parts. Then the general forms of the amplitude equations may be found for
given configurations of characteristic values of linear theory. Assume
that the state of the fluid may be characterized by N functions
U = (Ul,U2,...,UN), where the Ui(x,t) are such quantities as stream
function, temperature, or magnetic flux function. Normally, the fluid
equations may be put into the form

a =U M + x[") (1)

where)( and Y are (respectively) linear and nonlinear operators and
= (A, 62 , -  ) is a set of p parameters such as Rayleigh,

Taylor, or Prandtl number. We suppose that U = 0 is a solution of (1) and
that the linear theory for small UIt admits solutions like 'k(x) exp (st)
where k is a wave vector.

Consider finite systems with discrete spectra for s. Suppose that for
-Ac there are A critical roots of the characteristic value equation

with Res - 0 and that, for all the other roots, Res 0. Corresponding sets
of basis vectors may be constructed: the (generalized) critical vectors, U
Ci(x), and the stable modes Sj(x). We may expand

V(x,t) a W tC. (2) + -~ (t) S (Z) .(2)

J=1 1j=1

if " (rl, (K2, ..., ) 0, f tends to be zero as t-90 . Unstable
modes are required to excite stable modes if the latter are to maintain
nonzero amplitudes for long times. Hence r2) , at polycriticality, B .g(or).
As in the Bogoliubov-Mitropolsky procedure ( we make the anstaz C1)

U(x,t) - V(x,A(t)) (3)

A = JA + g(A) (4)

where J is an n x n Jordan matrix whose characteristic values have zero real
parts and g is a nonlinear function. The new variables A - (Al, A2 ,...)
are related to0 by a nonlinear transformation that puts the equation for
in the simplest possible form (where simplicity is in the eye of the
simplifier). Thus, the true amplitude isO r , while A is some new variable

"-. .*.- * *-,'L i i _ . -_' . - *: - . " .'-.-.. -. ' .. " . ",. -... - ." - ," - . ,, ..'. - *-' *' ' ' " ." ,-, .-'-, -",", , , - - '
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that might be called an internal variable. (For diagonal J, this is really 4"..'related to the Stuart-Watson approach [3J.) We obtain

I- MA V = X(v) - g(.v5)

*." We expand V and g in Taylor series in Ai; Vr, and gr are the sums of

terms of degree r. Then

LVr = r - g '(6)
JLV r I r V

where Ir is known from results of lower order arid I1 0. The technical
problem lies in finding the adjoint operatorf Tand its null vectors, Zr.

.', The solvability conditions,

., (Zr l - gr 1 (z -- 0, (7)
*l .r-3, %

determine the gr up to a certain gauge. When the gauge Is chosen so that

". g has as few terms as possible, (4) is in normal form [4].

This talk outlined our work on simplifying the calculations by using -

- analogies to quantum mechanical calculations and profiting from the tricks of3 that trade and indicated how we have been able to extend the method to include

(rather simply all things considered) the treatment of problems in which -
continuous bands of instability arise. Of course, it was not possible to
cover all that in detail as there were a few questions from the audience, but

I did get to write down Equation (1).

PERTINENT REFERENCES
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"MONIN-OBUKHOV" AND STABILITY THEORY APPLIED TO CIRCULAR COUETTE FLOW

Willem V. R. Malkus -

Smith and Townsend (1983) report results of an excellent experiment on

cylindrical Couette turbulence at high Reynolds numbers. M. Claussen (1983),
in a review and replotting of the Smith and Townsend data, finds that the . h\..

"universal" logarithmic boundary velocity law is not achieved even at a b..
Reyn2Ids number of 100,000. Instead he observes that meteorological-like
Morin-Obukhov" relations describe the mean circulation. In particular, an I' •

extcnsive z-1/3 region of circulation is found (where z is measured from the
boundary), before the flow achieves a constant circulation far from the
boundary.

Coincidentally, Leibovich and Stewartson (1983) have published a
sufficient condition for the instability of columnar vortices. They conclude
that such flow is unstable if

y 1, #+r Y< (1) '"

where /is the circulation, a prime indicates differentiation with respect to
the radial coordinate, ) , and W is the velocity parallel to the cylinder.
This stability condition is related to Rayleigh's linear, inviscid mechanism
of centrifugal instability, but admits axial flows and three-dimensional
disturbances.

Possible relations between linear inviscid stability arguments and
observed fully turbulent flow were discussed recently by this author (1979).
When a turbulent flow achieves statistical stability, it was proposed that the ". -

most stable state was one of marginal inviscid stability in the body of the
flow. It was shown that a general positive definite local stability condition,

J(f) may be written

(A-r

where , like z, is a coordinate normal to the boundary, Io andWE, are

constants related to stabililty conditions on the smallest scales, and where
only the leading terms of C(9) are important in the interior of the flow.
Application of Equation (2) to (1), for small V'W/rl, leads to a z- 1/3  /

boundary law for Fy and the possibility of a small negative value for r in
the interior, both features appearing in the Smith and Townsend data. A
numerical integration of (1), (2), and further assessment of the validity
limits of the theoretical proposal will be undertaken this fall.*

REFERENCES

Claussen, M., 1983. J. Fluid Mech., submitted.

Leibovich, S., and K. Stewartson, 1983. J. Fluid Mech., 126, 335-356.
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TURBULENCE MEASUREMENT FROM DOLPHIN

. Thomas Osborn

The USS Dolphin has been instrumented to make horizontal measurements
of turbulence in the ocean. The measurements consist of salinity, temperature,
velocity relative to the submarine, and small-scale velocity and temperature
turbulence. The results show the distribution of turbulence and doubly
diffusive convection (predominately salt fingering) in the waters studied.

A- The experimental apparatus as mounted on the Dolphin is shown in Figure 1.
The turbulence probes are located atop the tripod in a manner designed to
minimize data contamination due to vibrations.

-. The submarine is often operated in a slow dive, moving forward at about

1 m/s and sinking at about 10 cm/s. The data in Figure 2 was collected during
such a dive with a bit of depth cycling between 35 m and 40 m depth. The

dissipation rate shows a turbulent patch near 15 m depth that is well mixed in

temperature (also density and salinity see Figure 5). The high dissipation

rates about 42 m depth are in the stratified portion of the water column. The
turbulence data is displayed in Figure 3. The velocity turbulence is

I associated with the temperature microstructure above the well-mixed region.
The temperature microstructure above the patch forced by the velocity
fluctuations are salt fingers. It is band limited and not associated with

".- measureable velocity fluctuations.

.* Interestingly enough the fast thermistor on the Neil Brown Instrument3 jSystem CTD was also able to resolve the salt fingers (Figure 4). Here we
clearly see the forced temperature fluctuations above the well-mixed layer and

* the salt finger signature above that in the water column. The NBIS CTD
resolves the signature because the speed of the submarine is slow enough and

the scale of the fingers large enough that the peak of the spectrum is just
below the Nyquist frequency of the CTD system. A faster moving vehicle or a

smaller scale of finger would not have been visible in the CTD data.

To study the causes of the fingers we examined the temperature salinity

relation for the data set. This curve along with other mean parameters is
plotted in Figure 5. The data in Figure 4 forms a small central region of the
temperature versus depth plot shown in Figure 5. The salt fingers are at the

base of the salinity minimum in a region where the salinity decrease weakens

S-the stability due to the temperature decrease with depth. There is evidence
S..- in the temperature microstructure data of salt fingers and irregular tem-

perature fluctuations throughout the region of decreasing salinity from 36 m
• depth on down. This result was a little surprising since the stability ratio

Rp is seldom between l and 2, rather is often as high as 4 in this
interval. There is a lot of other evidence for salt fingering in this data

Aset.

S"-The relative importance of the fingers is still to be assessed. They

* are surpressed by the turbulence quite easily. The reasoning is as follows.

The velocity signal from the fingers is below the noise level of our

Cinstrumentation. That observational result is consistent with the measured

noise level and calculated finger speeds. Linden (1971) has shown that

".. . ..A.
. . .. . . . . . . . . . . . . . . . . . . . . .- **.
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turbulence surpresses fingers when turbulent velocity fluctuations are .
comparable to fingering velocities. Hence turbulent velocity fluctuations
that we can measure are sufficient to surpress the fingers. Now we need to
examine the data to see if the role of fingers is surpressed much of the time
by the turbulence.

Another subject that is interesting is understanding the role of
turbulence in the energetics of the ocean. Our past measurements of turbulent
velocity fluctuations from free-fall vehicles have shown patches of 1 m to
45 m in vertical extent in the ocean. A reasonable argument can be made that

* forcing by inertial current shears is an important energy source for the thick
patches. If this result is true, then much of the variability in the
turbulent field and the associated scalar fields will be related to

" variability of inertial currents rather than internal waves. Osborn (19 80a
and 1980b) outlines my arguments along these lines, the several papers
involving Gargett and others describe much of the present data base. The
paper by Simpson (1975) is very interesting for its portrayal of variability
in the shear field in the ocean. That paper shows substantial variability for
the velocity field.
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JFD (JOVIAN FLUID DYNAMICS)
1. NON-HYDROSTATIC, QUASI-GEOSTROPHIC FLOW

2. INERTIAL OSCILLATIONS, BAROTROPIC AND BAROCLINIC
INSTABILITY IN A ROTATING FLUID PLANET

Andrew P. Ingersoll

Jupiter and Saturn are rotating, convecting, fluid objects

(radius = 70,000 km, period of rotation % 10 hours, gravity - 20 m/sec2,

thermal emission = 1.7 times absorbed sunlight). Winds are mostly zonal
(<U 2> 1/2 = 100 m/sec), with eastward and westward jets alternating in
latitude (-33 d/dy 2 2Q ). Eddy winds around the large, long-lived
oval spots are comparable to the zonal winds. Eddy winds in the turbulent,

convective regions are smaller than in the large ovals, but they convert
significant amounts of energy into zonal mean kinetic energy
(<u-rvrad6/dy> ~/2<U2>/100 days; Ztii12>1/2 . 10 m/sec).

Nevertheless, the large ovals and zonal jets have existed for many years with
little change (Ingersoll et al., 1981; Ingersoll and Cuong, 1981).

Ingersoll and Pollard (1982) have considered the motions that might

exist in the interiors of the giant planets. They examine the possibility
that the interior is weakly but stably stratified (a2_*> L2 = TAS/4rL2,

where a is the planetary radius, L is the scale of motion in a direction
perpendicular to the axis of rotation, T is a typical internal temperature,
-S is the specific entropy drop from surface to interior, and 2.A is the
planetary angular velocity). Surfaces of constant S slope downward toward
lower latitudes relative to surfaces of constant pressure, temperature andM gravitational potential. Columnar motions, whose length scale parallel to the
axis of rotation is comparable to the planetary radius, are quasi-geostrophic
and anelastic but not hydrostatic. Accelerations appear in the axial momentum

equation, and buoyancy terms appear in the axial vorticity equation.

Several problems (Ingersoll and Miller, in prep.) have been solved for

this quasi-geostrophic system: low-frequency inertial oscillations of an

adiabatic (homentropic) sphere (periods long compared to the planetary
rotation period), low-frequency inertia-gravity oscillations in a weakly

S." stratified sphere, stability of a barotropic zonal flow 1(r) where r is

- cylindrical radius, stability of a baroclinic zonal flow U(z) where z is the

axial coordinate. For barotropic flow the stability parameter analogous to.

is (2jA/M) dM/dr, where M(r) is the integrated mass per unit area parallel to

the axis of rotation. The surface expression of a marginally stable deep

' barotropic flow has d27 /dy 2 .%.-3V6, approximately. For baroclinic flow
stability depends on the slope of the constant-entropy surfaces. Unstable

• -disturbances, which appear when the slope exceeds a critical value of order

0.2, convect heat outward across spherical surfaces and outward across

cylindrical surfaces. These results are consistent with observations of the

surface zonal flow and heat balance. Further studies may test whether

nonlinear baroclinically unstable eddies can transport heat from the interior

to the surface and maintain the zonal jets in the interior.

REFERENCES
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DOUBLE-DIFFUSIVELY DRIVEN MIXING ACROSS THERMOHALINE A

dFRONTS IN THE LABORATORY

Barry Ruddick

After a brief introduction to the basic physics and jargon of double-
diffusive phenomena, the discussion focussed on laboratory experiments on the

a driving by salt fingers of horizontal layers across a thermohaline front. V.

MacVean and Woods (1980) modelled the formation of a baroclinic
(density) and thermoclinic (property) front in a zone of large-scale 7.

S-convergence. The property front was typically much sharper than the density
-" front (2 and 15 km respectively after a few days) because of the tendency for

the density front to adjust geostrophically. A laboratory model of the
thermoclinic part of the front was described, in which the sharp property
contrast and vertical density stratification are included, but the effects of
rotation, tilted isopycnals, and thermal wind shear are not. A movie was
shown depicting the development and spreading of intrusive layers at the
front. The main balance of advection and vertical mixing due to salt fingers
was described. Following Ruddick and Turner (1979) it was argued that the
observed layer thickness, h, could be deduced by considering the energetics of .

the intrusion process, and agrees with the scale of oceanic frontal
"- intrusions. The vertical scales predicted by several linearized instability

theories were summarized. It was pointed out that theories for which the
basic state consists of lateral property gradients extending infinitely far in
either direction are intrinsically unstable to predict the length scales found
by Ruddick and Turner (1979). They must instead predict scales based on a .

Rayleigh number, and so be proportional to (g)L)4. R
The lateral flux of sugar was calculated in several ways from the

laboratory observations. All were found to agree with the hypothesis that the

sugar contours spread, on the average, with the frontal noses, so the lateral
flux of sugar was proportional to the nose velocity times the cross-front

"- property difference. The velocity, c, of each nose was observed to be
constant in time, obeying the empirical rule c - 5 X 10- 3 Nh, where N is the

buoyancy frequency and h, the layer thickness. This steady spread is quite
-. different from the t1 /2 spreading expected from a linear diffusion law and

suggests an inertial control of the finite-amplitude layer system.

REFERENCES
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A THREE-LAYER BAROCLINIC INSTABILITY ANALYSIS AND
ITS APPLICATION TO SUBTROPICAL FRONTS IN THE OCEAN

Donald B. Olson

Subtropical fronts are found between 20 and 300 of latitude in most
of the world's oceans. They are characterized by eastward near-surface flows
extending well into the interior of the subtropical gyres from the west. The
vertical stratification in these regions is dominated by two permanent thermo-

clines. The first of these tilts upward towards the poles and is mixed away
seasonally poleward of approximately 300. This near-surface feature is sepa-
rated from the main thermocline by a thick layer of weak stratification with

subtropical mode water characteristics. The main thermocline deepens poleward
in most of the areas within the subtropical frontal zone although there is
some evidence for eastward shear across it in narrow bands in the North

Atlantic.

The simplest model for the vertical structure in the subtropical fron-
.- tal zones which maintains the reversals in vertical shear observed in these

regions is a three-layer model. In the present study a three-layer, quasi-

geostrophic analytical model of channel flows on a j -plane is used to explore

the nature of the eddies and meanders observed along the subtropical front.

Preliminary calculations suggest that the flows do not satisfy the
necessary conditions for barotropic instability. Therefore, although the

horizontal shears probably affect the details of the meanders which are ob-
served on the fronts, they cannot account for the meanders in terms of a linear

theory. The susceptability of constant cross-channel flows of varying direc-
. tions in the vertical to baroclinic instability is explored. The model is

similar to that discussed by Davey (1977) except that the layer thicknesses and

the density contrasts across the interfaces are allowed to vary between layers.

The three-layer model allows one additional degree of freedom over the

common two-layer approximation. The asymmetry between eastward (stabilized)
and westward (destabilized) shear on a p-plane, as found in the two-layer
model is recovered. The cases in which the vertical shear changes signs
between successive interfaces leads to decreased stability (higher growth

rates) as compared to either the case of entirely eastward or westward shear

across the interfaces. There are two basic vertical modes which appear in the
analysis. The first long wavelength mode has a maximum amplitude in the sur-

face layer and is equivalent to a first baroclinic mode for the actual strati-

fication. The second unstable mode has its maximum amplitude in the middle
layer and is associated with a short-wave branch of the stability curves.

The actual shears observed in the subtropical frontal zone of the North

Atlantic consist of two narrow ('-200-300 km wide) bands with deep westward
but near surface eastward shear separated by zones with westward shears across

both interfaces. Both types of flow are unstable in the linear analysis. The

analysis suggests that the regions with eastward shear should have shorter
wavelengths and wave growth rates two to four times those in the intervening
westward flows. This is in qualitative agreement with the observation of

peaks in eddy available potential energy in the regions with eastward near- - 9

surface shear. The wavelengths of meanders observed in the North Atlantic

(300-400 kin) are also consistent with those expected in the linear analysis.

REFERENCES
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FRONTS BY CONFLUENCE -- THE BRAZIL AND FALKLAND CURRENTS MEET

Arnold L. Gordon
.I

The most intense and perhaps most unstable fronts within the world
ocean are formed at the western margins, where opposing western boundary

currents collide. These currents, driven by the Sverdrup interior flow of the
subtropical and subpolar gyres respectively, spread seaward after confluence * .*-

forming a multitude of meanders and eddies. Since these currents carry water
of vastly differing characteristics, warm-saline subtropical thermocline water -
versus cold-low salinity subpolar water a strong thermohaline front is formed.

An example of a front by confluence is that of the Brazil and Falkland
Current, which meet near 380S, over the continental slope adjacent to
Mar del Plata, Argentina. The Falkland Current often considered a branch of "
the Antarctic Circumpolar Current, carries northern Drake Passage (sub-
antarctic) water into the Argentina Basin, closely flowing along the isobaths
of the continental slope. Volume transport is probably between 10 to
20 x 106 m3/sec, though without an obvious reference level, transport is
not known to a reasonable degree of certainty.

The Brazil Current is relatively weak for a western boundary

current. Between 100-200S the highly variable Brazil Current may amount
to only 5 x 106 m3/sec. Further south near 240 S transport of nearly
10 x 106m3 /sec is determined. At the confluence the geostrophic transport

is about 25 x 106m3 /sec.

After confluence, the Brazil Current momentum dominates, allowing
further poleward advection of South Atlantic Central Water (SACW). An abrupt
return northward occurs, forming a quasi-stationary poleward extension or loop

of SACW near 50°W, which reaches at times to 46o-49oS. Often warm SACW
eddies are shed, which then drift south and southeast, lost to the SACW,
though some subsurface return may occur. As warm eddies are shed, filaments
of the Falkland Current rapidly spread eastward. Cycles of southward P
migration of the poleward loops with periods of eddy shedding occur on a time

scale of months.

Within the poleward loop relative warm subtropical water forces a
regional maximum in oceanic heat loss to the atmosphere. This forms deep
winter mixed layers (extending to 350 meters). Cooling without an input of
fresh water forces the mixed layer O/S point to fall to the saline side of the

parent SACW O/S curve. The local excess in evaporation enhances this effect.
The positive salinity anomaly (relative to the SACW curve) sets up layers of
low R =tA T/P A S (down to 1.3) making the poleward loop susceptible to
active salt fingers with associated boosting of the Kz value. Well- -

developed thermohaline steps usually taken as signs of double diffusion are
indeed observed below the remnant winter mixed layers.

Within the mid-depth (400-500 m) thermocline stratification north of
the loop, intrusions of remnant winter mixed layer water is observed. These

intra-thermocline eddies derived from poleward winter surface water represent
ventilation of the South Atlantic thermocline. They too are unstable to salt

finger. Note salt finger instability is aided by the presence of low salinity

Antarctic Intermediate Water at the base of the thermocline.

"7



-93-

Two research questions may be asked: 1) Could a regional enhanced
Kz value, due to the action of salt fingers, drive or contribute to a
regional anticyclonic circulation cell and poleward loop of the Brazil
Current? and 2) Do other oceans have similar quasi-stationary poleward loops
of thermocline water with thermohaline "ventilation" processes set up by the
confluence of oppposing western boundary currents? .

SATELLITE DERIVED KINEMATICS OF WARM CORE RINGS - AN OVERVIEW

Otis B. Brown

A brief introduction to satellite remote sensing technique and data
analysis procedures is given as an introduction. A bulk atmospheric
correction scheme based on multiple infrared windows is derived and applied to
April, 1982 satellite and ship observations of the U.S. East Coast slope
water. A bias of approximately 0.6C (warm) with a RMS of ~ 0.4C is determined

from an intercomparison of continuous flow through ship observations and
satellite SST derived temperatures. Implications of cloud detection
procedures to improvement of satellite SST retrievals are discussed.

An overview of the Warm Core Rings Experiment is presented as
background to kinematic studies of WCR 82-B. The location, motion, areal
extent, and orientation of 82-B as derived from satellite imagery, and other
measurements, are discussed. The role of shelf-slope Gulf Stream streamers in
modifying ring surface water properties is explored by viewing a selected
subset of 82-B satellite imagery. Temperature/Chlorophyll time series derived
from satellite data for areal averages on the shelf, slope, Gulf Stream, and
ring center show seasonal warming, variations in the efficacy atmospheric
correction procedures and streamer influences. A video tape time series (120
images) of 82-B from April to August is then shown. This time series provides
graphic illustration of the earlier results on ring kinematics and the
influence of streamers on warm core rings. Dramatic changes in ring areal
extent and surface temperatures are observed as a direct result of Gulf
Stream-ring interaction.

*-o-O- , .
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MEANDERING OF THE GULF STREAM AND LONG WAVE INSTABILITY

.-

Glenn Flierl S-

Two types of models for the wavelike meandering of the Gulf Stream have
developed in the literature: the first is based on linearized perturbation
analyses while the second attempts to describe the path of the jet axis in .
terms of average properties such as the net mass and momentum transport of the "
current. We demonstrate that these two approaches yield the same dispersion
relations for small amplitude, longwave, sinus mode motions of the current.

The simplest relevant instability problem considers perturbations upon
a zonal barotropic "top-hat" jet profile. The dispersion relation for the
sinus mode is -------------- A

where Uo is the mean current strength and - is the north-south width of thecurrent. In the long wave limit k 1 1 but P/ok still order 1, this.-.
simplifies to - '"

C3 /2 (2)

Showing that the jet is stable for long waves 1/k ' . This is a good
approximation to the full dispersion relation for very small JL but for
reasonable i is only good for k in the stable long wave regime. Guided by
the scaling c , U" ,(X t)'/'given by the long wave limit (2), we can
also solve the perturbation equation for long wave meanders on a baroclinic
jet. The perturbation equation is solved in three regions, corresponding to
JUI>>1 d, \UlA4z, and U 0 (outside of the Jet) and the solutions are matched

together, giving

c3/2f (3)

where I\U 41d and U2_A
1 d? are the mass and momentum transports of the

jet.

The thin jet approach starts by transforming the equations to a
downstream and cross-stream coordinate system based upon the (unknown)
position of the jet axis, assuming that the cross-stream scale is small
(order K ) compared to the scale of the waves along the stream. The velocity
field can be split up into the main downstream flow, the motions associated
with translations of the axis, and the residual flows. Integrating the
vorticity across the current and vertically gives a relationship between the
tangential barotropic velocities on either side of the jet and the motions of
the axis, with the mass and momentum transports being parameters. In the
exterior regions, the vorticity equation must be solved and fitted to the
normal velocities at the edge of the jet. The matching of the tangential flow
then determines the evolution of the position of the path. The dominant
motions In the exterior are barotropic but become nonlinear as the meanders
grow to finite amplitude. In the small-amplitude limit, however, the exterior lox
flow is solvable, giving motions decaying on a scale k01 3 4 -' to the
north and the south. The tangential flows can be solved readily and, with the
linearized form of the cross-jet and vertically Integrated vorticity equation,
yield the same dispersion relation (3) as the instability approach. In

1. k7



-95-

addition it is possible to find the study finite amplitude meander pattern by
solving

a + sin &- 0

where e is the angle of the jet from east and - is the coordinate along the
jet axis. The location of the axis in x-y space can then be readily found.

Thus the thin jet model reproduces known linear and nonlinear results,
- though the accuracy may not be as good as one might wish. In addition, it

seems to offer some possibilities for simplifying the finite amplitude time-
dependent problem; however, this method does rely upon obtaining solutions in
the region exterior to the jet so that the equation for the development of the
meanders does not appear to be a simple one-dimensional problem. The model
suggests that the meandering of the Gulf Stream is not simply the cause of the
mesoscale eddy field in the recirculation region and the Slope Water; rather,

* the two are strongly coupled.
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BAROCLINIC AMPLITUDE VACILLATION

Philip Drazin a

This seminar was a progress report of work with Albert Barcilon of
Florida State University.

When a differentially heated rotating annulus contains a liquid,many '6 .

types of baroclinic oscillations may be observed according to the values of
the temperature difference and angular velocity of the annulus. For one type, F
called amplitude vacillation, the surface of the liquid appears like a
standing wave which drifts around the annulus. Lindzen, Farrell and Jacqmin
(1982) suggested that this is due to the superposition of two unstable modes

* of the basic state with the same zonal wavenumber. Using a linear theory,
they calculated two such modes which grow exponentially with time while they
propagate around the annulus.

However, amplitude vacillation may be seen to persist for a long time
in the laboratory, so nonlinearity is needed for the modes to equilibrate and

" thereby for the theory of Lindzen et al. to be completed. On first hearing of
their work, we speculated, on the general basis of bifurcation theory, that

*-. weakly nonlinear modes with complex amplitudes A+ and A- should be
. governed by a coupled pair of equations of the form

* ci"A~ & = - iL IA ~l) A + higher-order terms,

where are the complex relative growth rates given by the linear theory,
-and and m± are some complex interaction coefficients.

For a substantial model, we consider a quasi-geostrophic flow of a
" Boussinesq fluid. The flow is in a long rigid channel in the zonal direction

-" and with a rectangular cross-section, there being thin Ekman layers at the top
and the bottom. The basic state is a zonal flow of the form =[Z4 FF(z)3',
with square of the Brunt-Viisglg frequency N 2 = / N/JI + E G (Z) for
0 < E 4_ 1, where No is some given constant and F and G given functions.
This becomes the basic state of Eady (1949) when E = 0. Perturbation
theory (McIntyre 1970) shows that the two waves of Eady which are neutrally

- stable when E 0 become unstable for small values of E. and many functions
F and G. This is an explanation of the results of Lindzen et al. Proceeding
to the nonlinear theory, we took a double expansion of the perturbation stream
function in powers of Ak and F, , where A is the order of magnitude of the
stream function. The leading term is the sum of the two stable Eady modes
with slowly varying amplitudes A+ and A_. The solvability conditions for
the system eventually give a coupled pair of amplitude equations of the
anticipated form above.

We assume that the basic quasi-geostrophic potential vorticity gradient
is antisymmetric about the level z - 0 of the middle of the channel. This is
a satisfactory representation of laboratory observations of the mean flow, and
it ensures that a-- 4 .. , so that viscosity renders the two linear modes
marginally stable together. It follows that the higher-order terms of the

amplitude equations are relatively small in the limit as N--> 0 . Then the
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equations may be solved by methods of the phase plane and shown to admit a
stable solution, with constant values of IA+12 and A1 2. This theory
then describes the superficial observations of amplitude vacillation, but
needs more thorough corroboration.
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THE GULF STREAM: BARRIER OR BLENDER
OR

ISOPYCNAL SIGNATURES OF ADVECTION AND MIXING

Thomas Rossby

Using the Gulf Stream '60 hydrographic data set, we have prepared
isopycnal analyses (maps) of pressure, acceleration potential, temperature,
and oxygen at the potential densities of Vre = 26.8, 27.2, and 27.6. These
have mean Sargasso Sea depths of - 600, 850, and 1050 m and shoal about 600 m
across the stream. We use the acceleration potential to define the path of
the dynamical front and use the property analyses to determine the existence
of a property front and its position relative to the dynamical front.

I.%

We find strong coincidence of the property fronts (both T and 02) and
the dynamical front all along the Gulf Stream (to 500 W) on the 0-9" - 26.8

*suggesting that the Gulf Stream acts substantially as a barrier between the
.-. slope and Sargasso Sea waters, particularly west of the New England Sea-

mounts. On the two deeper surfaces and especially on the 0-, - 27.6 there
are no concentrated property gradients along or near the dynamical front.
Instead the temperature and oxygen fields are characterized by eddy stirring

• across the entire region between the cold, high oxygen waters to the north of
Labrador origin and the warm (saline) waters to the south of the Mediterranean
origin.

The study was motivated in part by a desire to determine whether

isopycnal Swallow floats drifting in the Gulf Stream were likely to remain
trapped in it. The results suggest that this is so on shallow density
surfaces, and that when escape does occur, it is much more likely to the south
than across the cyclonic side into the slope waters.

Ii
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MIXING, WAVES, AND GRAVITY CURRENTS IN THE LABORATORY AND IN NATURE I j.

Tony Maxworthy 1

We attempt to put a number of recent experiments and field observations
into a more-or-less coherent framework. The interconnections are shown in the
diagram below.
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The basic energy source is due to a tidal motion, although the - _
available energy potential of oceanic fronts (upwelling or otherwise) is "7
another possibility. """''

The Gulf of California in the neighborhood of the Isla de la Guarda
appears to contain many of the phenomena of interest including the generation
and propagation of internal waves, gravity currents created by mixing

* processes, and upwelling fronts and plumes. These are especially clear in .
satellite observations using active (Seasat) or passive (Landsat, GOES)
sensors. This area is by no means unique, however, and data from Knight
Inlet, the North Atlantic continental margins, among many others can also be

considered.
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Firstly we consider the generation of solitary internal waves by tidal -.-%

flow over bottom topography. The main reference here is Maxworthy (1979). In

this paper it was demonstrated experimentally that an ordered sequence of

solitary waves could be generated from the lee waves formed behind an obstacle
being oscillated in a stratified fluid. It was also shown that mixing in a

stratified fluid could generate waves by collapse of the mixed region which

contains an excess of potential energy over its surroundings. This mechanism
has been explored further by Lansing (1983) and Lansing and Maxworthy (in '.
press) in a numerical and experimental study using a two-layer model. In the

numerical model the interface between the two fluids is replaced by a vortex

Ssheet and the obstacle by a distribution of sources. The results compare well
with the experiments and show the rapid evolution of a sequence of solitary
waves from the initial disturbance created close to the topographic feature. .

A new series of experiments on the 13 m rotating table at the
. University of Grenoble show further details of solitary wave evolution from a

* ' more complex lee wave field and indicate the importance of rotation in..
determining the initial plan-form of the waves.

The second main thrust of our recent work concerns the generation of
waves and gravity currents from mixed region collapse. The work has been D-M

reported in Maxworthy (1980) and Maxworthy (1983). In particular the latter

shows how, in a rotating stratified fluid, solitary Kelvin waves can be
S.produced. They look like ordinary nonrotating waves in side elevation but

have an amplitude which decreases away from the wall on which they are

supported. Since local wave speed depends on wave amplitude, the wave has a

curved plan-form in order for the wave as a whole to propagate at a speed
given by its maximum amplitude. In the limit of very large amplitude these

* waves propagate in gravity currents and should be similar to those studied by

Stern, Whitehead, and Hua (1982) and Griffiths (private communication).

The dynamics of viscous gravity currents are considered in two recent
.I papers, Maxworthy (1983). One is concerned with gravity current flows in

which the value of the current varies as to( . It is shown that the value
= 7/4 separates two distinctly different regimes. For o(( 7/4 the flow is

initially in a state of buoyancy-inertia balance and undergoes a transition to
" buoyancy-viscous balance at a later time. For oK(> 7/4 this sequence is

reversed. In the second paper the fluid within the gravity current has a

diffusivity which is different from that of the main body of fluid. This

gives rise to a double-diffusive interface between the two fluid regions
across which both mass and momentum can be exchanged. This results in a large

stress being applied to the interface which in most cases dominates the
viscous stress and results in a different power-law behavior with time.

Experiments show that under suitable circumstances these power laws can be
observed and support the basic hypothesis. Secondary effects tend to make

these effects in other parameter ranges and the theory should be extended to

take them into account.

Up to now we have assumed that mixing creates only one layer of mixed

fluid. However, recent experiments by Browand and Hopfinger (1981), and

Thorpe (1982) suggest that in a mixed stratified fluid multiple layers can

form and each one can then evolve as an intrusion. If a grid is oscillated in

r a stratified fluid, a front is formed separating mixed from unmixed fluid.
C. When this front has propagated some distance from the grid the local

Richardson number, based on the local integral scale and fluctuating of-"

'-hF.

.'.I
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velocity exceeds on a critical value and the front collapses into sequence of
intrusions the vertical separation of which is given by the value of the
Osmidov length (Lo = (6/N3)1/2) at collapse multiplied by a constant of
order one (E is the local dissipation and N the BrUnt frequency). M
Experiments in tanks of different widths suggest that three-dimensional
effects may also be important in deciding this scale since in a wider tank the
collapse of three-dimensional turbulent blobs is not constrained by theM

,.presence of side walls and would be expected to be thinner than the intrusionsJ1

~in a narrow tank. Recent experiments on the flow created by towed grids in a
stratified fluid show this result very clearly. After collapse the vertical
velocities are very small while the horizontal velocities are large and

independent of direction. The horizontal scales of motion increases with time
suggesting an upscale transfer of energy reminiscent of the predictions of the
theory of two-dimensional turbulence, and these possibilities are currently
under quantitative study.
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BOUNDARY FORCED NONLINEAR PLANETARY RADIATION

Paola Malanotte Rizzoli

In recent years, a renewed interest has been focused upon the Gulf

Stream system and its interaction with the mesoscale oceanic eddy field. From
the experimental evidence accumulated in experiments like MODE and POLYMODE,

important questions emerge not yet adequately treated even in the context of

simple theoretical models. One of such questions concerns the possible
generation mechanisms of the mesoscale eddy field and, in the limit of high-
amplitude radiation, the formation of ring-like structures from an eastward

meandering jet, like those observed to emerge from the Gulf Stream.

* This question is related to the general problem of radiation of
mesoscale energy from a meandering current, which was studied by several

* -authors. Flierl et al. (1975) examined the behavior of semi-infinite domains
driven by boundary forcing, using the linear barotropic vorticity equation on

the J -plane. They found that the existence of eddy-like motions depends

crucially on westward phase propagation of the boundary motion. Pedlosky

(1977) treated the same problem with a 2-layer quasi-geostrophic model
including a mean current. Harrison and Robinson (1979) studied the question
of radiation from a northern boundary into a finite domain, with zero-boundary

• " conditions at the meridional boundaries, which makes it rather different from
the infinite northern wall problem. In this latter case, the basic result is

that in the quiescent ocean the far field can transmit energy radiation by the

* northern boundary only if this has a westward phase speed.

All these models are however linear. Nonlinear effects may be expected

to modify the above results, as indicated by numerical experiments carried out
with fully nonlinear models, in which mesoscale radiation is observed to be

excited and radiate away from the eastward moving jet.

* The above problem has been investigated in the context of a fully

nonlinear, although simple, model, in which again the meandering current is
idealized as a moving northern boundary.

The model used is the quasi-geostrophic equivalent barotropic potential

vorticity equation in a zonal channel over variable topography. For the free

case, this model admits as solutions free nonlinear waves, which for weak-
but-finite nonlinearity and dispersion are periodic cnoidal waves and, in the
limit of infinite axial wavelength, solitary waves. This nonlinear Rossby

radiation is asymmetric in the channel. In the limit of high nonlinearity and

east-west versus north-south wavelengths of the same order of magnitude, the
free nonlinear wave is a high-amplitude monopole, having closed recirculation .

regions, similar to the ring-like structures observed to emerge from the Gulf

Stream.

The problem of boundary forced radiation has been completely examined

in the weakly nonlinear parameter range. The forced response - which has the

S"same x-structure as the boundary wave - exists for all those linear phase

speeds of the northern boundary which do not correspond to the eigen-

frequencies of the free modes of the zonal channel. For this specific set of

• "'elgenfrequencies, nonlinearity allows the solution of the problem, while in

the purely linear case the response of the interior field would be infinite.

n .a ' I °
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Thus, a weak boundary forcing of 0(E), if £ is a measure of the non-
linearity, excites a response of 0(1) in the interior field. The equilibrium

boundary forced resonant response obeys a forced Korteweg-deVries equation.
For the specific forcing of a sech 4 , the equilibrium resonant response is

again an cnoidal - or solitary - wave, whose amplitude can have multiple
equilibrium states, specifically two. The equilibrium states are found in
general for arbitrary values of the detuning, nonlinear phase speed C1 - of
0(r) -of the boundary wave. fi

Two effects of nonlinearity can be demonstrated analytically.

First, let the detuning phase speed C1 of the northern boundary be . .
* allowed to slowly vary in time, corresponding to a slow modulation of the

forcing. Introducing the long time scale T - t, this leads to the
time-dependent version of the Korteweg-deVries equation. An initial condition
corresponding to the steady equilibrium solution can then be let to evolve
over the long time scale T. The observed behavior is soliton production in
the region of the zonal channel directly affected by the forcing. When the
produced solitons do not feel any longer the northern forcing, they will
propagate as nonlinear waves in the direction allowed by the unforced
Korteweg-deVries equation. In the opposite direction, they will evolve into

dispersive wave packets - this means that the nonlinear resonant response will

evolve on the long time scale producing in one direction nonlinear radiation --

of shorter wavelength and deterministic nature - smaller eddies.

The second effect of nonlinearity can be demonstrated when allowing the

northern forcing amplitude to increase to 0(l), namely passing to the highly
nonlinear case. Then, a boundary forcing of 0(1) will excite an interior 

-

resonant response of 0 (.+), always treating the case of long radiation in
zonal direction. In this case, the cross-channel structure of the nonlinear
response can be profoundly modified. In the linear case, over a topography r
which is essentially northward sloping, an eastward moving boundary wave will
excite a response which, at the best, has an oscillatory nature in some
interior, limited region. Near the northern boundary itself, this response is
decaying exponentially to zero. On the other side, in the previous highly
nonlinear case, the resonant response excited in the interior can be shown to
have an oscillatory behavior near the northern boundary even when this one is
eastward moving. These results imply that the limit of high nonlinearity can
profoundly modify the results of the linear theory, even in the context of

simple analytical treatments like that here performed. Obviously, numerical
experiments are necessary to confirm the above analytical theory and to
explore more complex effects which cannot be treated analytically.
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WHAT MAINTAINS THE SUBTROPICAL FRONT AND ITS ASSOCIATED COUNTERCURRENT?

5Benoit Cushman-Roisin

The Subtropical Countercurrent is an eastward flow across the
V'. subtropical gyre at a latitude where a classical wind-driven circulation

theory would predict a westward flow feeding the western boundary current.

Japanese investigators documented the Countercurrent as it is found in the
upper 150 m of the North Pacific at about 20ON (Uda and Hasunuma 1969, and

references therein). Only later was the current associated with a zonal

density front, the Subtropical Front (Hasunuma and Yoshida, 1978; Roden, 1975;
and references therein). A rapid check of orders of magnitude reveals that

*. the countercurrent can be easily explained as the zonal thermal current
associated with the meridional density gradient across the front. They are

thus two components of one phenomenon. But, what is the mechanism responsible

.. for such structure?

Takeuchi (1980) modelled the ocean circulation between OON and 50ON
as forced dynamically (surface wind) and thermodynamically (surface heat

flux). This latter drive consisted of warming at low latitudes and cooling at
06 higher latitudes depending on a temperature difference between the ocean and

the atmosphere. The numerical results show a shallow eastward flow along a
" "density front at about the central latitude of the subtropical gyre. More-

. over, the front tilts, as observed, slightly north toward the east, from

20°N to 300 N. Very similar results were obtained when the zonal winds

were replaced by meridional winds with the same curl. As a consequence,

w convergence of Ekman transports cannot be the main explanation for the

" existence of the subtropical front, although it can strengthen it. It thus
remains to discern among all processes included in Takeuchi's model, besides

Ekman convergence, which one is responsible for the formation of the front.

To simplify the problem to a maximum, one assumes that the dynamics

*yield an upper-level flow field consisting of a nondivergent wind-driven

. Sverdrup flow and of geostrophic but divergent thermal flow:

agHiH agH H
X x 2  1 x 1 2U -HV T V -V + T

Hyy 2fH y H y 2fH x
.-. ~~gHOH2  '-'[ i,

w H (u +v ) - T
1 x y 2f2H x

where T is the zonal wind stress, H1 the upper-level depth, H2 the lower-

' level depth, H = HI + H2, T the upper-level temperature, and w the

vertical velocity between the two levels. The model is closed by an equation

for T

u T + v T + wT - k(T-T (y)),
x y H a

where T is the given, latitude-dependent atmospheric temperature. All

temperaiures are measured as an increment above the uniform temperature of the

lower level; the wT term thus represents vertical exchange of heat between

the two levels. Replacing u, v and w by their known expressions, one obtains

............................................................... * .- ,~
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a single nonlinear equation for T:

C- x 1gi2 1 x
X y T) T - - T - k(T-T (y)). U 12f2 H x OH y y a -.

This hyperbolic equation is best solved by the method of characteristics. b

Close inspection shows that the subtropical gyre (150N-450 N) is covered by
two families of characteristics: one originates from the western boundary
region while the other originates from the eastern wall. Moreover, for the
parameters corresponding to the Pacific Ocean, these characteristics
intersect, forming an envelope line running across the basin splitting it in
two regions of independent properties. This line corresponds to the Sub-
tropical Front. With some diffusion added, the resulting temperature field is
as shown on Figure 1. One can clearly see a front starting at 20°N to the
west and tilting northward toward the east. The associated flow field (not
shown here) consists of the subtropical circulation superimposed on which is a
thermal current flowing eastward along the front. The Subtropical Front and
Countercurrent are thus well reproduced by this very simple model.

The frontogenetical process is now clear, as a direct hopshot of the
intersecting characteristics. Without the 6TT term, the characteristics
would be the Sverdrup streamlines, but with that term present, they do
intersect. That term is traced back to the vertical exchange of heat between
the two levels as forced by the vertical velocity resulting from the con-
vergence of isothermal flow on a beta-plane. It is this term, in combination ,2%"
with the others, which is responsible for the existence of the front. It can
thus be stated that the combined effect of Sverdrup flow with the convergence
of the isothermal flow on a beta-plane is the mechanism responsible for the
maintenance of the Subtropical Front and Countercurrent.
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TURBULENTLY GENERATED EASTERN BOUNDARY CURRENTS
&w.

Roger L. Hughes

The appearance of eastern boundary currents in the finite Froude numberPkmodels discussed by George Veronis, suggests that it might be possible to .- '.

obtain such a current in a model with slow mean flow but large amplitude
geostrophic turbulence. Such a boundary layer appears to occur in the eddy
resolving model of Robinson et al. (1977). A simple analytical model is given - "
in which such a boundary current is driven by the nonisotropic nature of the
direct Reynolds stress of the eddy field near the eastern boundaries. The
structure predicted agrees with that calculated in the eddy resolving model.
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A TWO-LAYER MODEL OF THE SUBPOLAR GYRE AND THE SUBTROPICAL GYRE

Rui Xin Huang

A study is made of the current structure of a subpolar gyre and a
double gyre basin. A simple two-layer model is used, and its behavior is

explored as the amount of water in the upper layer is gradually reduced. A
dynamically consistent picture includes a strong, isolated western boundary
current flowing southward and an internal boundary current flowing northward.
The isolated western boundary current may represent the Labrador Current and
the internal boundary current may represent the North Atlantic Current. P

The analysis follows Parsons' (1969) idea, i.e. we assume that the

lower layer has an infinite depth, so that the simplest flow pattern can be
found with relatively simple algebra.

We also try to analyze the case when the lower layer thickness is
finite so that motion can occur within the lower layer.
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VISCO-DOUBLE-DIFFUSIVE DENSITY INTRUSIONS '.°.'
a

William R. Young

Consider a layer of Boussinesq fluid which is initially stratified by

two components, say heat and salt (T and S). Suppose that the fluid is

confined by solid boundaries through which there is no vertical flux of heat
or salt. Thus, unless the system is forced by horizontal fluxes, diffusion.. -.

and viscosity ensure that the compositional gradients are eventually erased.
In this note the initial value problem whose outcome is this motionless state

with uniform distributions of heat and salt is discussed. In view of its
conceptual simplicity, and also recent laboratory experiments (Ruddick and

Turner, 1979), a particularly interesting special case is the spread of a

compositional front. (Note that it is possible to contrive the jumps in

compositional concentration so that the density is uniform across the front.) -
This problem was first treated by Erdogan and Chatwin (1967) who limited their

discussion to spread of a single buoyant contaminent.

The related problem of a fluid whose compositional gradients are *."-

maintained by externally imposed horizontal fluxes is also discussed. The

most important issue in this steady state problem is how the flux of a

quantity is related to its gradient. Because of buoyancy forces, heat and

salt are dynamically active and consequently the flux-gradient relations of

the two quantities are nonlinear and coupled.

If one is familiar with Taylor's (1953) theory of dispersion, it is

very easy to understand physically how this nonlinear coupling arises. Taylor

considered the advection-diffusion equation:

zo o Z d (lb)

for dye concentration, G , in a pipe. When the horizontal length scale, L, of

the dye is much greater than d, then

67 (2)

where 9 is the vertically averaged dye concentration .. " .- "

(3)

The approximation (2), which is correct to order (d/L), is a consequence of

rapid cross current mixing (i.e. the last term in (la) is bigger than all the r

others) and no flux boundary conditions. Taylor derived the following

approximate evolution equation for :

# , A -, (4)

where ( k ) is the enhanced diffusivity, and
5 .. i' (5)

where C is a dimensionless constant which depends on the shape of the velocity
profile, U is a scale estimate of the velocity, d is the width of the channel, . - -

. ~. . . . . ....
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and K is the diffusivity (either molecular or turbulent eddy) which effects
cross channel mixing. Equation (4) is simpler than (1) because one spatial
dimension has been "projected" out of the problem. -

The condition for validity of Taylor's theory is

UI (6)

and it is vital to realize that it is possible to satisfy (6) and simul-
taneously have

A K(7)

provided the aspect ratio, (d/L), is sufficiently small. Thus, from a
mathematical point of view, Taylor's theory is an aspect ratio expansion and
likewise in the dynamical problem treated here it is assumed that the
compositional fields have horizontal length scales which vastly exceed the
depth of the layer. As in the kinematic shear dispersion theory, the most
immediate consequence of this disparity is that variations in T and S across
the layer are much smaller than variations along the layer. Thus, if we
define vertically averaged fields:

1 ~ T (8a)

5 " (8b) ..

then because Ks 5, and ,,,Tz. dominate all the other processes in the

conservation equations for heat and salt:

T - (x,t) (9a) .- ',

S Z "(x,t) (9b)

with errors of order d/L. Given (9a,b) it is very easy to calculate the p
pressure from the hydrostatic relation and then the horizontal velocity from..

the x-momentum equation. In this latter relation the small aspect ratio

ensures that, as in lubrication theory, the dominant balance is between

vertical viscosity and horizontal pressure gradients. One finds that

A E~5/I3 ,)Pc~)(10)

where P(S) is a fourth order polynomial. Given u, it is straightforward to .

use Taylor's theory to calculate the enhanced diffusivities for heat and

salt. From (4) and (5) C7.

# -~ r '(11a)

. - A = s -, (11b)

which together with /."/Cg

is a closed set of nonlinear equations for T (x,t) and S (x,t). In (11) C is
a dimensionless number. It is interesting to note that if the viscosity and

........................ X-
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diffusivities are nonconstant (i.e. depend on z), then one can still derive

(11) and only the value of C is different.

5 To summarize, compositional gradients produce a density driven shear

flow, (10), which in turn shear-disperses the compositional properties. This

is the source of the nonlinearity in (11).

The preceding derivation of (11) was informal and heuristic. Using the

aspect ratio expansion technique of Childress and Spiegel (1981), the
ep derivation can be formalized: one expands the fields in powers of E = d/L.

At zero order ( 0) one obtains (9) and consideration of higher order terms

eventually yields (11) as a solvability condition.

Now given (11) we turn to the task of obtaining some solutions which

illustrate the effects of the nonlinear terms. Smith (1978 and 1982) has
discussed solutions of a special case of (II) viz k.s - so that there is

only one component. Suffice it to say that the techniques he used are
reasonably effective and straightforward when applied to (11).
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ON THE INTERACTION BETWEEN WIND AND THERMOHALINE FORCING IN SUBTROPICAL GYRES

Claes G. H. Rooth .

The general problem of synergisms between wind stress, heating, and
fresh water fluxes at the sea surface as forcing functions for the large-scale
ocean circulation still eludes our understanding. The central difficulty lies

in the apparent diversity and inhomogeneity of the turbulent mixing
processes. Empirical bounds on the latter, based mainly on global transient

tracer studies, suggest the existence of an intermediate time scale range,
however, wherein the transient adjustment of the density fields in the main

. body of the deep oceans is achieved primarily by a mechanical adjustment
- (spin-up) process. This time scale range depends on the vertical scale of the

transient process. For scale depths of a few hundred to a thousand meters it
varies from several decades to a few centuries. These time scales are of

special interest in the context of possible oceanic feedback on climate
transients. There is, in addition, a substantial interest in understanding I
oceanic signatures of ongoing climatic change. This, in fact, is a major
motivation for the study reported here.

There are two central precepts for this study. One is that while the
main formation of dense water masses may involve air-sea interaction processes
over vast areas of ocean surface, their actual sinking (and effective
injection into the interior) occurs within quite limited and geographically

well-defined regions. This implies that in most of the ocean volume the
response can be considered as a far field effect of a virtual source-sink
system in density space. The second precept is that the net changes in water
mass volume distribution may be less informative of the process than the

dynamic signatures of the adjustment. The archetypal case is the abyssal
source problem originally analyzed by Stommel and Arons (1960) (SA,
hereafter). While questionable as a model of the steady-state abyssal
circulation because of the demonstrable inhomogeneity of the interior mixing
processes, the SA theory should apply very well in the circumstances described
above. If one considers a water mass transformation transient where the scale p
height is between one half and one kilometer, then it is easily seen that, for
an Atlantic-size basin, the cross-basin slope induced is about 100 m for a

source-sink pair strength of one Sverdrup (Megaton/second). This implies that
"" the dynamic baroclinic signature dominates or is comparable to the mean height

change for several decades. A climatic monitoring strategy aimed at
diagnosing large-scale transients in water mass transformation characterstics
should therefore concern itself to a substantial degree with the decadal
average cross basin thermocline slope.

Now, the primary limitation to the SA theory associated with inertial

effects is associated with its dependence on the adequacy of Beta as an
estimator for the large-scale potential vorticity gradient in the water masses
involved. Recent observations as well as numerical experiments tend to

*. support the theoretically based suggestion that the main wind-driven gyres .
.. should include deep domains of substantially weakened gradients, or even of

approximate homogeneity in the linearized potential vorticity (f/h, where h is
the layer thickness associated with a specific int,val in potential density). .', ,,'
Such domains cannot support the SA adjustment process without a first order
modification in the induced motion fields. Numerical experiments to explore .

". the character of such deviations were conducted at NCAR in cooperation with
W.R. Holland, using an existing and well-documented eddy resolving gyre domain
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circulation model (quasigeostrophic). A reference case has been integrated by
Holland (1983) to a state of approximate statistical equilibrium. This case
involved an antisymmetric wind stress pattern relative to the zonal (E-W)5 center line. It produces a well-defined separated jet along the latter, in
the mean, witr. a strongly concentrated eddy energy distribution. The vertical
structure is represented by three layers of 300, 700, and 4000 M depth,
respectively. We perturbed the forcing of this model by imposing a vertical
velocity at the interface at 1000 M mean depth with initial conditions given 1%

by the final state of the wind-driven run. A number of forcing configurations
pm and intensities were run. The overall results suggest that the gyre to

separation process for a strongly eddying free jet is strongly sensitive to
the combined forcing of the two upper layers, but insensitive to the
divergence imposed in the deep lower layer. Specifically, we found that the
separation point could be "pulled" latitudinally by the imposed divergence in
the second layer, with retention of the well-defined structure of the mean
separated jet, as long as the latitudinal displacement was comparable to the

*. width of the region of high eddy kinetic energy. Increased forcing intensity
-" lead to a destruction of the well-defined mean jet in the interior, and to a

strongly vacillating dynamics in the separation region, as indicated by the
eddy field intensity. Further experiments and, above all, analytical studies
are needed before these phenomena can be considered understood. It is clear
already, though, that one has to be suspicious about the relevance of many
efforts to refine, by inclusion of higher order mechanical processes, the
agreement between purely wind-driven models and observations of the western
boundary current separation process.
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RESTRAINING BAROCLINIC INSTABILITY: SOME EFFECTS OF HORIZONTAL SHEAR

Stephen P. Meacham

m. i

In the theory of baroclinic instability, nonlinearity is important as a
mechanism for curtailing the unbounded growth of an unstable wave that linear
theory alone would predict. It also affords a route for the transfer of
energy between the length scales of the unstable linear perturbations and
other length scales. By using multiple time-scale techniques, one can
investigate the finite-amplitude dynamics of a slowly growing wave

analytically.

In this fashion Pedlosky (1970) has examined the weakly non-linear
evolution of baroclinic instability in a two-layer model (e.g. Phillips,
1954). In this example, the potential vorticity gradient of the basic state
is independent of the horizontal coordinates. A wave/mean flow interaction

equilibrates the unstable wave whose amplitude then exhibits a simple
oscillation on a long time-scale comparable to the e-folding time of the
linear instability. One can show that it is possible for the unstable wave to
interact with neutral Rossby waves through a resonant triad interaction on a
similar time scale. The amplitude scale that the initially linear unstable
wave must reach before either the wave/mean flow or the wave/wave interaction
manifests itself is the same for each interaction. One can think of the two
mechanisms as being equally powerful in this example.

The work described here differs from the example considered by Pedlosky
(1970) in that it looks at the same two-layer, zonal channel model but ,"
includes meridionally varying topography so that the potential vorticity

" gradient in the lower layer is now a function of the cross-channel
(meridional) coordinate. The model is configured so that the basic potential

vorticity gradient in the upper layer is uniform and positive while the
potential vorticity gradient in the lower layer, T 2y, has a minimum in the
middle of the channel, (TT2Y)min, say. When the planetary vorticity

gradient, 1 , is chosen so that (TT2Y)min 0 0, the basic flow is
critical. Decreasing a below its critical value, /3c, to A Ac - '
results in a basic state in which r2y is negative in a region around the
mid-line of the channel. When 0 < 6 << 1, this region is narrow, of width
0( I/2). The flow now satisfies the integral conditions necessary for _
instability, and one can indeed find an unstable mode by numerical
procedures. For small values of the supercriticality parameter, A , the
unstable modes can also be found analytically.

The growth rate of the slightly supercritical instabililty is small,
0(A 2 ), when compared to that of the meridionally homogeneous Phillips model
(which is 0(40/2), with A similarly defined). The unstable eigenfunction

• .exhibits an internal layer at the mid-line of the channel within which it

"2 varies on an O(,_ 1/2) length scale. Over the remainder of the channel width
the meridional scale is 0(1). The stream function in the lower layer is much .

weaker than that in upper layer, being 0(A&) in the internal layer and
0(A42) elsewhere. The range of unstable wavenumbers is only 0(18 3/2) in
width.

The internal layer structure of the linear solution is crucial to the
nonlinear dynamics of weakly supercritical wave which differ from those of the
meridionally homogeneous case by Pedlosky (1970). The principal effect of
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nonlinearity is to modify this internal layer. Analytically it can be shown
that wave/wave interactions of the resonant triad type (unstable wave and two
neutral Rossby waves) are potentially a more effective nonlinear mechanism~~than wave/mean flow interaction in that the unstable wave can be modified by

triad interactions at a smaller amplitude, 0( 2), than that at which
wave/mean flow interactions would be felt.

A numerical investigation of the 3-wave problem is in its infancy but
has demonstrated that it is possible for a pair of side-bands to halt the
growth of the unstable wave.
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THE INTERACTION OF THE WINTER BERING SEA ICE EDGE
WITH AN OCEANIC FRONT

Seelye Martin

A winter experiment called MIZEX WEST conducted during February 1983 at
the Bering Sea ice edge studied the interaction of the edge with an Oceanic
front. The experiment was carried out from the NOAA ship DISCOVERER and the

Coast Guard icebreaker WESTWIND. In the experiment, the WESTWIND went into
the ice interior, deployed a series of twelve satellite- and radar-tracked
buoys on scales of 1 to 40 km, then drifted under the influence of strong
northeast winds out toward the ice edge, where the DISCOVERER 

carried out a Wt

series of CTD and ice drift observations. Analysis of the motion of buoy
pairs shows that the ice motion toward the edge divides into two parts: a
near solid-body motion, followed by a transition to strong variable motion as
the ice floes move over the oceanic front. Analysis of the data suggests that

"" the ice over th front diffuses in a similar non-Fickian manner to dye patch
diffusion in the temperate ocean. The data suggests that the ice melting
maintains the front, while the instabilities in the geostrophic flow

L-- associated with the front cause the ice diffusion, which in turn contributes
to the melting and the front maintenance.
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LECTURES OF FELLOWS

THEORY AND EXPERIMENT OF ISOLATED BAROCLINIC VORTICES ,

Mathieu Mory

Long life time eddies have been the object of intense research in past

years. Numerous examples have been pointed out by oceanographers or astro-
physicists, for instance warm core rings in the ocean or the red spot on
Jupiter. These eddies show a very coherent and permanent structure. They can i
persist during months (warm core rings) or centuries (red spot). An
explanation of this persistence has been given by analyzing energy transfer
between the mean shear flow and the eddy. It is obvious however that the "
effect will play a key rule in the dynamics of these eddies. Any vortex will . --

radiate energy through Rossby waves. Nevertheless, under particular
circumstances, solutions for isolated eddies are found, which do not radiate
(Flierl, 1983; Flierl et al, 1980; Flierl et al., 1983). Such solutions are
known for barotropic and baroclinic flows.

The present paper is an attempt to describe theoretically and
experimentally isolated solutions for a baroclinic vortex on a half beta
plane. This work was suggested by a previous experiment of Griffiths (1983).
Griffiths's experiment is conducted in a tank with a parabolic shape at the
bottom, on which a gravity current is released. The formation of vortices is
observed behind the nose of the current. Griffiths argues that these vortices
are due to Kelvin Helmholtz instability at the interface of the boundary
current in a similar way as in Griffiths and Hopfinger's (1983) study of
gravity currents moving along a lateral boundary. The vortices are very
intense and they break up the current into a series of intense baroclinic
eddies. However, Griffiths's experiment shows very complicated features. It
is highly desirable to simplify it. A straightforward simplification is to "-
replace the parabolic bottom by a linear slope and this paper discusses this
case.

In this more simple framework, replacing the parabolic slope by a ".

linear one, Stern (private communication) found an integral relation which
suggested some analogy with previous work of Flierl et al. (1983), and Flierl
(1983). Detailed theoretical solutions, using different scalings are
presented here, which show the existence of isolated baroclinic vortices on a
linear slope. The solutions are described and compared with experimental
observations.

Another important approach to baroclinic vortices is the study of their

stability. Although stability studies are not the purpose of this paper, this

approach cannot be neglected if one wishes to carry out a tractable
experiment. Experimental studies of the stability of baroclinic vortices have
been done by Saunders (1973); Griffiths and Linden (1982). They do not
involve the effect, but they provide an interesting framework for the
experiment.

This paper will address three different points. First the framework is
presented and Stern's integral relation is demonstrated. In the second
section solutions for baroclinic isolated eddies are derived. The third part
describes the experiment and presents its results. Comparison with
theoretical solutions is provided and the discussion of the baroclinic
stability of the eddy is addressed.

717-",4 .
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1. Framework and Stern's Integral Relation

The basic idea of the experiment consists of a flow over a linear slope

bottom (see Figure 1).
Z /// //// // / z %' ,.

Figure 1

* The top surface can be either free or limited by a rigid lid. The model is a
two-layer baroclinic one. The lover layer (denoted 2 ) is slightly denser

than the upper layer (denoted 1 ). Only those cases for which the lower
layer is finite in space are considered in this paper. It consists therefore

* in a heavy dome over a slope.

With the system of coordinates drawn on Figure 1, h(y) designates theU depth of the whole fluid, and hl(x,y), h2(x,y) are respectively the depths
of layer 1 and layer 2

then h(y) h(xy) + h2(xy))

The shallow water equations are written for both layers, using the
Boussinesq approximation

'3 ( 4.V E ± k X V- V (2)

+ "E2 T1 I

is the mean density and f the Coriolis parameter. The pressures are

sTpposed hydrostatic and are therefore related by

' 2 7 1 -g'Vhl (4)

where g' is the reduced gravity: g, g A

Two final equations come out of the continuity equation for each layer

+ V.( (5)

+ PAZ1 ~ ): (6)

rip..
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By adding Equations (5) and (6), and since = 0, we obtain \ V

V.(vl hl + z2 h2) = 0 (7)

,. The equation (7) assures the existence of a function 4) given by

.'l hl + Z2 h2 = K ( (8)

This paper considers isolated solutions of that problem, i.e. 4 and
its first and second derivatives decrease toward zero far away from the dome.
This only supposes that velocities, vorticity and circulation are zero at
infinity. After integrating (8) over the plane (x,y), we get

+ - -2.) -0(9)

As a convention we write the integration of X2h 2 over the whole
plane instead of integration over the dome. This is valid since h2 = 0
outside the dome. Therefore equation (9) expresses that the total linear
momentum is zero.

6
The evolution equation for the total momentum is obtained after

multiplying equations (5) and (6) by hl and h2 respectively, integrating
over respective domains, and adding both integral equations. The resultant
equation has three terms. The integrated Coriolis termI + %4°LG

vanishes because of equation (9). Next we have the nonlinear term

%r + f :- A 9(T
After introducing equations (5) and (6) it becomes

4. .Z;" +E.0 r -cdj

The time derivative here may be taken outside the integral since vIi  0 far
- away from the dome and h2 = 0 on dome perimeter. It is zero as a

consequence of (9). The remaining nonlinear terms represent a flux far away
from the dome, and therefore vanishes for an isolated flow. Finally we have
the integrated pressure term

which also must vanish since we have shown that the Coriolis and nonlinear -"

terms are zero for an isolated flow. Using hydrostatic relation (4), we obtain

Integration by parts using (1) and the condition h2  0 on the
perimeter of the dome leads to the simple form:

+W

CL41
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where pl is the departure from a reference pressure far away from the dome,

which is taken to be zero. For a linear slope V h = cte and

40 + 2.-'-(0

Two physical remarks may be noted about this integral theorem. First

it should be pointed out that the integral theorem is a hydrostatic relation
which expresses a "mean" static equilibrium of the gravity dome on the slope.

The buoyancy force is balanced by the integrated pressure forces at the ..

interface.

It could also seem surprising that the 1 effect does not appear in the
theorem. However, this effect is present. In an analogy with a solid body on
the slope, this body will either move uphill or downhill if the balance

between buoyancy and pressure forces is not realized. And the guess is that
there is no way for the dome to change its latitude without radiating Rossby
waves.

2. Theoretical Models

We presented in the previous section the basic equations describing the

* evolution of baroclinic flows. In what follows we will only look for isolated

solutions, i.e. solutions going to zero at large distance. Furthermore the
" radial flux of momentum also has to vanish far away from the center of the

eddy, so that the vortex is not radiating.

Solutions in other cases have been found, and the mathematical P
framework is now well known. It is more difficult to provide a scaling which

is relevant to the process. Physical arguments also have to be discussed to
- infer realistic potential vorticity distribution. However, the model will be

an inviscid one.

* 2.1 The scaling

In the upper and lower layers the horizontal velocities are scaled by

V1 and V2 respectively. The same horizontal length scale L is assumed for

both layers which as a convention gives a measure of the radius of the eddy.
The scale for the pressure is given to be of the same order of magnitude as

- the Coriolis force, an assumption which is consistent with the geostrophic

approximation.

The depth h is scaled by H and hl and h2 by (1 - )H and H

respectively. Finally the time scale is given to be consistent with the speed
of topographic Rossby waves which scales as F [IL'/N. Again f is the

Coriolis parameter and a( is the angle of the slope with the horizontal plane.

The scaling is summarized in Table i.

r .'.
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(x,y),vL (ul,vl)' Vl P1 .. OffLV1

hovH (u2,v2)lv V2  P2 j fLV2

h 2 "6 H 

TABLE 1

The equations are written for each layer in a dimensionless form

upper layer

,k X -" ..,(

lower layer

a±. :. - E.z •.V + "  L TEL -P, (13)

S'?. + C2. ( D > (14)

Later on, Equation (1) and the hydrostatic Equation (4) become

1 - 'y = (1 -') hl + Sh 2  (15)

2VP2 = lPl + FG'V y + F Vh 2  (16) .

We introduce four dimensionless parameters:

the Rossby number for each layer - V

PFL
the Froude number F _, '_

the slope parameter L

and S measures the relative depth of the lower layer. In the following, the
Froude number is taken as 0(l) and the slope parameter S' is < 1. For .
and the Rossby numbers 6 1 and -2 , two cases are considered:

1- 'U Et E .-u S ' and all these parameters are
supposed <1 . The model is therefore a geostrophic model for each layer.

2- o j s 0 o stOphand f .or << ltohu a

The model is geostrophic for the lower layer but not for the upper layer.
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2.2. The geostrophic model z Si-u 'V '«

The stream functions )l and 42 for layer I and 2 are given by the
respective pressure in each layer. For simplicity, F 1 and E 2 are taken
as equal and the labels are omitted.

Then the velocity field is determined from

7 (17)

P I and 4)2 satisfy the quasigeostrophic equations for potential
vorticity, i.e. Olt

' Y 4 C 4+ +=-o (18)

21E

Equations (18) and (19) are easily integrated for solutions with

uniform translation at speed c along the x axis, i.e. translating east-west.
In fact, t t is replaced by-cA/a~in equations (18) and (19). Using the
Jacobian J, equations (18) and (19) are now written

y' C 7-Lp(20)

F3 V., 1~ + C. (21)

.. which are easily integrated in

* - t~)~Y, (22)

and V4)p -+ cL4. 4+c¢S'U) (23)

L G and H are unknown functions, which are determined from physical arguments.

It is beyond the scope of this paper to carry out the whole analysis of
this problem. In particular we will only consider solutions translating to

the west (c<O). It can be shown that there is no isolated eastward
- translating solution. A justification of the non-existence of eastward

translating eddies will come out of the analysis for westward translating
eddies. 

7-

.. MV..

.P~h -
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Moreoever, we will also only consider axisymmetric solutions. .
Asymmetric motions of modon type (i.e. of the form L0(r) sin 9 ) are shown tobe necessarily of 0 amplitude. Our solution will be derived in a cylindrical

coordinate system. Since all equations are dimensionless, it is valid to 7.
impose the further condition:

h2 (r) = 0 for r > 1 (24)

From considering equations (22) and (23) it is obvious that two domains
have to be considered in the (x,y) plane whether h2 - 0 or h2 # 0. In
other words, two solutions are expressed for the upper layer, one in the .

domain r <1 and the other for r>l.

Necessarily, the dome perimeter (h2 = 0, r = 1) is a streamline in
the moving frau, for the lower layer. Because of thea effect, it comes out
of the hydrostatic equation (16) that the dome perimeter cannot be a stream-
line for the upper layer. Fluid moves from outside the eddy throughout it.
Potential vorticity conservation implies therefore that the shape of the
function G is the same for r)l and r<l. G is determined by considering the
motion outside the eddy. Since for x-+ ,L),-.*0 and 71 I4 0, the
only possible form for G is G(Z)=Z/cF . (22) then becomes

V~g-~I ~(25)
C I-

For r l h2 =0 and an axisymmetric solution for (25) is

The nonradiating condition imposes A = 0 and then

=-. 0 for r 1 (26)

The motion for r l is the solution of (25) with the boundary conditions .

-~at r1 (27)
Yp IL

which ensures the continuity of pressure across the line r - 1 and also that
the fluid crossing this line will not support a discontinuity in velocity.

The form for the unknown function H (Eq. (23)) is not uniquely

determined as for G. The simplest way is to suppose H - P where P is
constant. This could be physically justified by noting that mixing inside the
dome would homogenize the potential vorticity.

The hydrostatic equation (16) is integrated as

Iw

L L Y-+FS'+ F t + const. (28)

The line r 1 1 is a stream line in the moving frame for the lower layer.

Y . + const on r 1 (29)

.. l
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Since h2 = 0 on that line and because of (27) it comes from
equation (28)

c - (30)

-~ As mentioned above, this justifies the nonexistence of eastward propagating
eddies, at least with this simple geometry.

. The whole set of equations to be solved may be summarized as follows

4), 1 +Y 7 - (31)

- .=Pfor r4l (32)

-V - 412.

4)2 y,4 Sg F (33)

with the boundary conditions

Stpl~ -J 0 (27)

(.I -F !' .O on r =1 (29)

(24)

The system (31), (32), (33) Is linear and we get a solution for it
which matches the boundary conditions (27), (29), (24). The solution is
expressed

4 4), N .4[1=[(-, -) (34)

- (L EF + EMS J) _____ (35)

with " - -

F 'I F

The condition (27) leads to the determination of the Froude number by

solving numerically the following equation

jo ~ T-C, (54)
Then F 0.032 (37)

. . . . . -. |
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The condition (27) is strictly equivalent to the fact that the integral
relation (10) has to be satisfied.

The scaling imposes two other conditions, namely h2(0) - 1 and

max V (r) = 1
which lead numerically to f.

P 1.04 1 ..

and 0.53 
(38)

We will not discuss here in detail this solution. This will be done in
Section 3, where the theoretical solutions will be compared to experimental
observations. We note, however, that the scaling gives a consistent
solution. In fact, P is 0(l) and C and S are of the same order. The model
predicts large scales since the Froude number is small.

The azimuthal velocities in the upper and lower layers as well as the
depth h2 of the heavy dome are plotted in Figure 2. The motion is cyclonic
above the dome and mostly anticyclonic inside.

Figure 3a and 3b show the mapping of the streamlines in upper and lower
layers respectively. The frame of reference is the frame translating with the
eddy.

2.3 Non-geostrophic model 6 4-u 0(^)

In fact this model is geostrophic for one part. Since F.2 <<1 the
geostrophic assumption is still valid in the lower layer.

.* .9.

Similarities exist between this model and Flierl's model for warm core
rings. However, although the mathematics are similar in both formulations,
the physics in our model is quite different than in Flierl's theory. For warm
core rings, the vortex (for which F 1 ~1I) is contained in a region of finite
volume. In our case, the upper layer, where we look for an ageostrophic
solution, extends radially to infinity. As we shall see later, this imposes
strong conditions.

The formulation for the lower layer is close to the presentation of the
previous subsection. The geostrophic approximation is used and velocities -
inside the dome are determined by the streamfunctiont 2 (equal to the
pressure P2) as in Equation (17). 4) 2 satisfies the quasigeostrophic
equation (19) which is simplified to lowest order in

16 CIL ) ., k= -I- 2
J Yb~~(39)

As done in 2.3, integration of this equation is easily performed for westward
translating eddies. We get

2.4, 4- CbIV ~ 1(1. (40)

There are few guidelines for choosing for H. If H is a constant, the motion - "
* of the heavy dome is a uniform westward translation at speed c. If H is taken

J
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as a linear function of h2, some coupling between the lower and upper layer
is obtained. It comes out from further analysis that the velocities in the
lower layer are then proportional to the velocities in the upper layer (but
should be smaller)

The geostrophic approximation is no longer valid in the upper layer
since E4 ov 1. We have to take into account terms of order of magnitude of
the Rossby number £1. The analysis is simplified, since time derivative Z4
terms vanish (V'<< 1). Equations (11) and (12) become

E-4 (T-V) !r4 + IS X -V7P., (41)
-" V. -k-1 0d . (42) *. ..

Equation (42) ensures the existence of a function k 1 as

(43)-F.. .. : ...
Incorporating these expressions, a simpler form is obtained for (41):

* An integral form of the later equation is

4 Y~j) + ( y) ] 4- P

d £ULU- = &~SC'. (44)

The pressure Pl is known from the hydrostatic equation (16) whose
integral form to lowest order is

£: 4 + 0 0 (45)

Also, using Stern's integral theorem (10), we get

Pi 0  if r>l (46)

For an isolated solution 4)1 vanishes far from the eddy. Therefore
it comes from (44) that the only solution is

= for r > 1 (47)

Inside the eddy (r4l) the simplest form for B is given by uniform
potential vorticity in the upper layer i.e.

B'(4J I) = P and B(4)1) = P4I (48)

In a nongeostrophic vortex, the velocities in the upper layer are much
larger than the translation speed, which is neglected. Streamlines in the
moving frame do not penetrate Into the eddy or, at least, they remain close to
the perimeter of the eddy (r = 1). This allows some potential vorticity jump
between the inside of the eddy and the outside.
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Using (48) and (15), an axisymmetric solution of (44) is obtained by
solving .. '-

F 
(49a)

A + LII4(Xr) = (49b)

wlere v1 is now defined as the azimuthal velocity

(50)

and the solution verifies the boundary condition

h2 (l) = 0 (51)

After some algebra, derivation of (49) leads to

. -- ( = -..F P .. ,.,.-
(52)

When the centrifugal term E is neglected, (52) transforms to a simple
system: M

* _ + (53)

Simple solutions are found for (53), which must satisfy the integral form
(49). This implies

p p> (54)

-. and then ."

for r (1 (55)
.A\ ( Io -_ .

* with the conditions

,~-j

f F4- ) (56)

1= -I (57)

Equation (57) expresses h2 (0) 1. Also the velocity v, is normalized
i.e. max vl(r) =. This maximum is reached for r .

.... .....
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This does not lead to a physically meaningful solution. The .. ;..
nonradiating solution imposes vI - 0 for r>l. Such a strong shear at r - 1
is consistent in an inviscid model, but not acceptable in a physical sense.
Flierl's model for warm core rings also gives a maximum velocity at the
perimeter of the eddy. In that case, however, the perimeter is also the
interface between the two fluids. In our case it is expected that the eddy
will induce a flow outside the vortex (r> 1) in the upper layer. There is no
way for this induced flow to be isolated and the vortex will then radiate
energy. In a further analysis, solutions with variable potential vorticity

distribution have to be examined. In any case, since 4 Ml 0 for r)l (eq.
47) and since it is desirable to eliminate shear at the edge of the eddy,
potential vorticity distributions have to be studied whose kinematic solutions
have a zero velocity at r - 1.

3. Experimental Observations - Stability - Comparison with Theory

3.1 Experimental set-up - observation of baroclinic eddies

I~R

ope

06LE inq To0 64-,

-too4

Figure 4. Experimental set-up.

AThe experiment is conducted in a square tank (108 cm wide, 35 cm
depth), and the tank is rotated at a rate between 0.6 and 0 .8 rad s-1 . A

* linear slope is put at the bottom with an angle a( with the horizontal plane.
Two angles have been used, .( t 40 and a(1 100. An experiment was also

* carried out with no slope (e = 0).

The way of releasing a heavy dome on the slope is quite similar to

Saunders and Griffiths (1973) and Linden (1982) experiments. A cylinder

(diameter Ro ) on the slope is filled up with denser fluid until the

height S. H (H being the total depth of the fresh water). In our experiments

the relative initial depth of salt water is varied between 0.4 and 0.9.

. . . . . . . . . . .. . . . .- .. . . . . .

. ... . . . . . . . . . . . . . . . . . . . .I * *)~
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The density difference Al between salt water and fresh water is varied
between 4%0 and 10%0. The radius of deformation LD is then LD - GH /f.

The denser fluid is made visible by dark dye and the motion on the free
surface is obtained from the displacements of small white paper pellets
r qed on it. The flow is recorded by taking photographs of the experiment

tbove, with the camera rotating at the same rate as the table. The
e ;re time was in most cases 5s so that it was possible to estimate the
v ities in upper layer from the length of the streaks due to the
displacement of the paper pellets. Although no picture was taken, a side view
of the experiment was obtained by looking through the plexiglass side walls of
the tank.

As in Saunders's experiment, the heavy fluid is released by pulling the I
. " cylinder up. The heavy fluid collapses and spreads out. This first

adjustment realizes a balance between momentum and pressure. Depending on the
initial conditions, a stable baroclinic vortex is observed or the pattern

S"becomes unstable and breaks down into several baroclinic vortices.

An accurate dimensionless number to describe the stability in terms of
- the initial input conditions is a Froude number Fo as

Fo = s o  (58)

" where 6 o is the relative depth of dense fluid in the cylinder before
starting the experiment. Experiments were carried out with the initial Froude
number Fo ranging from 1 to 2.

An experimental estimation for the stability criterion is

> -. (59)

For initial Froude number exceeding this value, stable baroclinic vortices are ".1
observed.

A typical example is shown on Figure 5. The value of Fo in this
experiment is Fo = 1.6. The experimental conditions are summarized in Table
2.

g' H so

100 gcm.s- 2  1.3 S 20cm 0.9

TABLE 2

The sequence of pictures shows the pattern from a top view at successive
• . times, respectively lOs, 30s, 50s, 75s, and 135s after the cylinder has been
- pulled out.

The conditions for this experiment are weakly unstable (Fo - 1.6).

iIn fact, one strong cyclonic and one weak anticlonic vortices appear. The
strong one forms rapidly, within two or three rotation periods. The whole set
of pictures shows a westward and northward translation of the cyclonic eddy.

o 'o

p.
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A more detailed analysis indicates however that the northward motion occurs
mostly during the formation time of the eddy and when it approaches close
enough to the western wall. In pictures 5b and 5c the eddy has moved
slightly downhill from its position in picture 5a.

The westward translation is very clear. Although a significant
*- westward translation of the eddy is due to the first instability, the

translation speed is later much slower, about 0.2 - 0.4 cm.s-1 . This speed
is in fact much smaller than the topographic Rossby wave velocity, as
predicted by our theoretical solution.

Typical diameter and velocity scales for the eddy are about

2L - 30 cm V1  2-5 cm.s-1  i
which indicates a relative vorticity in the eddy between f/2 and f. p

A significant scatter appears in our experimental results. Further

experiments have to be performed, after having improved our set-up. In fact
the ratio of the scale of the eddy to the size of the tank is actually too

* large to describe with accuracy the time evolution of the eddy and to reduce
sufficiently the influence of the wall. However, we emphasize from our
experimental observation the existence of strong stable baroclinic vortices
moving slowly westward. We refrained from calling the vortices isolated
vortices since some uncertainty remains about that point. For instance, a
small tail is observed on Figure 5 behind the cyclonic vortex. We have

presently no argument to decide whether this indicates some interaction withU the weak anticyclonic vortex or whether this is due to Rossby wave propagation.

3.2 Comparison with theoretical models

Comparison of experimental velocity profiles and of the shape of the
dome with theoretical predictions is actually beyond our experimental

, -abilities. Nevertheless values or relationships between the potential
vorticity P, the Froude number F, the Rossby number E , and the relative
depth of the dome have been deduced from the theoretical models. These
theoretical results are tested with our experimental results.

The scaling obtained from the experiment is summarized in Table 3.

" f G g' H 2L S' F S

1.3j1 100 8cm.s- 2  20 cm 30 cm 0.26 0.19 0.7

TABLE 3

Comparisons of the experiment with theory have to be done very
carefully. It is first noted that the theoretical and experimental shapes for
the dome do not compare well. A rough drawing of an experimental shape
(dashed line) is compared on Figure 6 with the shape obtained from the

geostrophic model (solid line).

-A".
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Figure 6. Comparison of the shape of the dome deduced from the geostrophic
model (-) with a qualitative experimental estimation (-.... ) -

In order to estimate the velocity scale, careful estimates of 6 and L are

required. The volume of dense fluid in the heavy dome is conserved. Taking
and L from Table 3 overestimates the volume of the dome. It is more justified
to calculate the length scale L s associated with 6 , for which the volume of
the dome is accurately estimated. The results are plotted in Table 4 as well
as the corresponding estimates of the Rossby number I 1 and the velocity
scale VI, deduced from the nongeostrophic model.

2L, 6  ._V1

0.3 35 cm 0.29 6.6 cm.s-  -

0.4 30 cm 0.62 12 cm.s- 1

0.5 26 cm 2.1 35 cm.s- 1
.. - ,-..

0.7 22 cm 4.1 59 cm.s-1

TABLE 4

The most plausible result is for 6 = 0.3, even if it still
overestimates the velocity scale. For higher values of 6 the nongeostrophic

model is no longer valid since the Rossby number becomes too large. The
centrifugal term is not negligible. w

The geostrophic solution does not compare well with observations -.
either. This is not too surprising since E o I 1 is assumed for deriving
this solution. Furthermore the value of the Froude number (eq. 37) predicts a
very large scale. The diameter of the dome is about 1 m, i.e. 10-12 times the
radius of deformation. Such range lies far outside the abilities of our
experiment.I

* . .. . . . . . . * . - .,,A-- ..-*

< .... 1 '- ... i. '_ _ ll II I i .. .. % i- [ % - " .. . . ". . . . ." . . . . .. "° ," . . ;
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3.3. Baroclinic stability of vortices .'

As indicated in subsection (3.1), baroclinic instability conditions
impose very strong limitations on our experiment. A complicated pattern
results when instability occurs after pulling the cylinder up. The motion of
vortices cannot be controlled and strong vortices generally move rapidly
uphill toward the wall during the instability events.uphill.

A rough instability criterion is proposed in the subsection 3.1:

Fo - H .6c 1.6 - 1.9 (59)

. This estimation of the stability criteria agrees with the experimental
K work of Sauders (1973) (in which the effect is not present). Saunders used

a technique similar to ours except that the heavy fluid filled the whole
cylinder (i.e. -1) before starting the experiment. The following stability s
criteria was obtained by Saunders _ >,

Saunders also showed that the dense fluid spreads out one deformation

* radius LZ-_ ./ This result is verified in our experiments and the
diameter of the baroclinic vortex is then

.- °J,.

2L ! 2(R o + LD) (60)

Some interesting remarks are deduced from the relationships (59) and
(60).

First we should point out that there is no way to observe in our

laboratory experiment baroclinic eddies as large as predicted by our
n geostrophic model. Baroclinic instability will occur in any case. Whenever

such a solution could be observed in other situations, there remains some
uncertainty about its stability.

In our experiments, we did not explore the whole possible range for
stable baroclinic vortices. Only large value of 6, have been used. It comes
out from (59) and (60) that stable baroclinic vortices with small relative

"- depth must have a large radius of deformation. For instance

for So = 0.2 LD ow3Ro

and this predicts the scale of the vortex to be about 8 Ro. A much larger

tank than those we used is required to study such an eddy.

4. Conclusion

This paper addresses both theoretical and experimental aspects of

isolated baroclinic eddies. A geostrophic solution is derived (equations 33,

34 and 35) and demonstrates the existence of isolated baroclinic eddies
characterized by a large length scale (eq. 37). These vortices translate

- westward with a small velocity compared to topographic Rossby wave speed (eqs.

29 and 37). A nongeostrophic solution with constant potential vorticity is

also presented (eq. 55). This solution is valid in an inviscid model but

i.L *-
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imposes a nonphysical shear at the edge of the eddy. The study of
nongeostrophic solutions has to be continued with the case of nonconstant
distribution of potential vorticity.

Laboratory experiments demonstrate the existence of stable baroclinic
*, eddies (Fig. 5). As predicted, the vortices translate westward at a small
*: speed. However, an important discrepancy appears between observations and

theory. Our observations are limited to a limited range of strongly .
ageostrophic vortices for practical reasons, and therefore the discrepancy is
not too surprising. This suggests a more careful scaling of the set up in
order to possibly observe weakly ageostrophic stable vortices, determine their -.

translation properties, and examine more carefully their radiation properties.
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LANGMUIR CIRCULATIONS IN A STRONG SHEAR FLOW

Sanjiva Lele

1. Introduction

Langmuir circulations are organized convective motions which form in

the surface layers of ponds, lakes, and oceans when moderate wind blows over
them. These motions have the form of longitudinal vortices whose axis is

approximately aligned with the direction of the wind. The vortices produce
surface convergence and thus lead to the collection of floatsam, seaweeds,
oils, or other organic films into streaks or bands which then provides a

p.- visible surface manifestation of the circulation. The downwelling speeds in
these motions can at times approach about 1% of the wind speed.

Lagmuir circulations bring about significant vertical transport of

heat, momentum, nutrients, and other biological materials - and hence their

understanding is fundamental to the physics of the mixing and transport

processes in the surface layers of naturally occurring bodies of water.

In a series of papers, Craik and Leibovich (1976) have provided a

theoretical model in which Langmuir circulations arise through a nonlinear
interaction between the surface gravity waves and a weak current. This model

has been used by Leibovich and Paolucci (1980) and more recently by Leibovich

and Lele (1982) to systematically explore the dynamical characteristics of
Langmuir circulations such as the vertical fluxes of momentum and heat, their

effectiveness in overturning stable density gradients and producing mixing,

etc. Recently Leibovich (1983) has reviewed the literature on Langmuir

circulations, and we refer to this review for further details of the phenomena.

The theoretical model developed by Craik and Leibovich is appropriate

when the orbital speeds due to the surface gravity waves greatly exceed any

* mean currents with which they interact. Though in most circumstances this is

a valid assumption yet there are many situations where the mean current is not

small compared to the wave induced orbital speeds, but rather equal or large.
Windrows or surface streaks are known to occur in the latter case as well, but

the Craik-Leibovich model is inapplicable to account for their generation. It

is the latter situation which we wish to address in the present work.

Craik (1982) has argued that longitudinal vortex instabilities can

arise in general shear flows due to the interaction of small amplitude waves
with the shear flow. He adopts the generalized Lagrangian mean (GLM)

formulation which unfortunately obscures the instability mechanism for strong
shear flows. In the present work we consider the nonlinear interaction of
surface gravity waves with a strong shear flow in a density stratified

medium. The problem is posed entirely in terms of Eulerian variables which we
find easier to interpret. Some of the ideas inherent in Craik's work are
directly reflected in the present development.

The principal result is that we provide a mechanism through which the

interaction of gravity waves with a strong shear flow drives longitudinal

vortices. It is found that these instabilities have an essential anisotropy

with the windward anomaly larger than the cross stream anomaly, and it grows

h°I"
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at a rate much faster than the Langmuir circulation on a weak shear flow. The
nondimensional growth rate depends on two nondimensional parameters in

addition to its dependence on the wavenumber. One of these parameters which
Is like a Richardson Number measures the static stability of the basic flow

and the growth rate decreases as this parameter is increased. The other
nondimensional parameter is like a Froude Number, being a ratio of the

velocity difference due to the shear across a scale height to the phase speed
of gravity waves. As the basic flow shear is decreased, the growth rate of - "-

the instability is seen to decrease. We further find that our linear
* stability problem is unaffected by a small correction to mean flow which

* allows for arbitrary vorticity distribution. Hence the present stability
problem is applicable to a large class of shear flows which have a small but

arbitrary vorticity variation.

In Section 2 we discuss the nature of the basic flow. Section 3 poses

the linear stability problem for the basic flow. In Section 4 appropriate

boundary conditions are derived for the eigenvalue problem governing the
linear stability. Section 5 presents the numerical results and explores the
variation of the growth rate with the nondimensional parameters governing the
problem. Section 6 presents a brief discussion of the energetics of the

instability. Finally we discuss some implications of the present instability
mechanism to more general shear flows.

2. Basic Flow

The basic flow whose stability we wish to analyze here has three

contributions to it.

a) A unidirectional mean flow (whose direction we choose to be the
x-axis) having a uniform shear (Ub ).

b) A smaJler mean flow along x which has an arbitrary vorticity

distribution (cab"Cz).

c) A small amplitude surface gravity wave on the shear flow described

by (a)-(b) above, with all the harmonics and higher order nonlinear.'

corrections it might imply (Ub
(
3" ).

Hence, the basic flow can be written as

Ub =Ub + E Ub + fUb +..

A
where Ub = U'Z L

(2.) A
Ub =Ub MZ

and z is the coordinate pointing vertically upwards, and ELL are small ,
parameters. In what follows, E will be chosen to be the wave slope of the
gravity waves. The ... refers to higher order terms which we have not

bothered to write.

U ,".'

. ; '.. -.
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The density field for the basic state is written as

P* -- r+.)9

where Pr is the reference density. Pb provides a stable stratification

whose magnitude is governed by a small parameter, V..

The momentum equations are then used to solve for the surface gravity
waves on the prescribed mean shear flow. Some important features of these
small amplitude gravity waves are summarized below.

i) The waves travelling in x-direction are irrotational to leading

order. Oblique waves are, however, rotational, and their velocity field is
three dimensional.

ii) The dispersion relation for the waves is given by

of-wae ad2 + U' cos is t- gm t 0av'"

where (4 is the frequency of the waves, 9 is the angle between the direction".Nof wave propagation and the basic flow, and 9 is the magnitude of the wave -'

number. The phase speed C for waves travelling parallel to x-axis is then
given by (f,

AC :t!:-
-2u with the positive sign corresponding to the wave travelling in +x direction.

iii) Craik (1968) has shown that certain triads of these waves lead to "-
second order resonant interactions if U'< 0. We further recall that for U'> 0

~7.. which is case of interest in the present problem, there are no second order
resonances.

3. Linear Stability Problem

We consider infinitesimal disturbances (u, p, P ) on the basic state
(Ub, Pb, P ) The evolution equations for the disturbance fields are:

- U )U, Pr .(3.1)

V.L L O o (3.2)

, La v0 (3.3)

Since the basic state whose stability we wish to examine is available as a
power series in a small parameter E, we expand the perturbation fields in a
similar power series, i.e.

(o) ( t)-. .'S +- (34)

"P.'

.......................... ..... ,....

.... ... .... ... ........................... ~.w.*
% ..-. . -. .,,' '-........-.. . .... - .-. .-.. .". , -'- .-"-'..,. ...." .,.- '., . .; .-.- . .• .-, -.-. .. , . ....-- , ,.; ' ..• .. ., . -.-.
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At leading order, the problem governing the perturbation fields is
formally identical to the problem governing the leading order surface gravity
waves on Ub'Oshear flow. As a result, the solution corresponds to some
arbitary combination of these waves. Since we already know that for U'> 0 the rM

nonlinear interaction of these waves with the primary wave cannot lead to a
second-order resonance, we chose to restrict our attention to a special class *'

of disturbances. These disturbances are: .4.

i) Independent of x-direction LI1Z

ii) Periodic in y-direction

iii) Evolve on a time scale 0 which is slower than the time scale of
the surface gravity waves.

An inspection of the leading order problem then reveals that the

disturbance velocity field must have a special form for the above conditions
to be consistent with the governing equations, which is

u = (u1 O,, E v, F w ) (3.5)

With the above form of distubance, the leading order problem
implies ) = 0.

The next step is then to proceed to higher orders in the perturbation

expansions. At each order one takes an x-average of the equations to derive
the equation which governs the x-averaged fields. This equation is then

subtracted from the original equation to render an equation governing the
x-periodic fields.

At O(IE) this process identifies the appropriate slow time to be *.

.. t and yields

a) Equation governing the slow time evolution of u °
'
"

)

b) Equations governing the wave distribution produced by the " -

perturbation.

These equations are:

7W" (3.6)

where -C is the appropriate slow time for the problem, and

((0 CO U + U +"

"-," - Wb (3.7)

where .

• ~ ~ ~ ~ kt -- Lk}#.',l r Xr b (3.8) '-.

-) ,, , ..(0)

,? e "L.-,.,
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and (Ub , 0, b are the primary wave velocities. In Equations (3.7)
above we have taken the curl of the momentum equations.

It is possible to provide a simple interpretation for Equation (3.6) if

we work through the corresponding vorticity equation. These are

-° = ~t"~(3.9) *-..

I--
2~3= u' (3.10)

r." 0 -'''-

which state thatO2 is produced by stretching the basic flow vorticity
and is produced by tilting the basic flow vorticity.

Equations (3.7) which govern the wave distortion, however, are complicated,
and we have been unable to discover some other set of variables which would
simplify its form. Lagrangian displacements following the basic mean flow are
of no help in this regard.

At O( E 2 ) one derives an evolution equation for the streamwise_.X'

vorticity. This equation can be written as

'a - =r e (3.11)

where - __7 and

( > represents an x-average of the quantity. We have further assumed
that the small parameter 7) is equal to E 2. In dimensional terms it implies
that the nondimensional ratio

IE 2 w2 (3.12)

where N is the Brunt Vaisala frequency, 0 is the frequency of the surface
gravity waves and E is the wave slope. If we substitute typical values we
expect in the left hand side of Equation (3.12), we indeed find a number of
order unity. < 4e )> appearing in Equation 3.11 can be found by
systematically expanding the incompressibility condition (3.3) at various

orders of E . The result of such an expansion is that

--- - lb (3.13)

This formally completes the set of equations we need to solve.

IF. . -

... ... ... ... .. ... ... ... .. ... ... ... .. .% "

.. . . . . . . .. . .. . . . . . . . -. . . . . . . .
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We now look for disturbances which are periodic in y with a wave number
k and have a growth rate G' (to be found). Without any loss of generality, we

can write down the following expressions;

-b V. e9  (3.14X- t)
" -'U. e ~ ~ ~ where Il.is the velocity scale "*14

-J w Z (3.15)

= (Z) e ~ .'-.'Q

When these are substituted in Equations (3.7) governing the distortion of the
waves, they yield the following relationships. """ 1 "

0,) c , (z) Ce4 (x t)j e

- lA W(Z) C.&i4j SA41 X - Co
Functions 'fu, 4v, and !w describe the vertical structure of the wave
distortion. There is a continuity condition which can be written as

" wheret _ (3.17)

Equations (3.7) then provide the differential equations which relate the

vertical structure of the wave distortion to the vertical structure of the
primary wave and the longitudinal vortex perturbations. These aret ;[ I.

D~(uu)~,) - u~nee~j (3.18)

Given the forms in (3.14) and (3.16) it is now possible to evaluate the
* vortex force term appearing in (3.11).

It is convenient to make the equations dimensionless by choosing L-l -

as the length scale, 1/U' as the time scale and 1/LU' as the velocity scale.

The dimensionless equations are

7-2 2.- (3.19)

(3.20)

D [(- ) 7,] = (- / + e ' :'
(3.21)

where (I-- 4F) - (3.22)

2-.
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and itv/k has been renamed as fv- The nondimensional parameter R
is like a Richardson Number for the problem and is a measure of the static
stability of the basic state. The parameter F =lu'2- is like an inverse
Froude number and is a measure of the destabilizing effect of the mean flow
shear."-

.N We further note that if we choose the small parameter J. to be equal
to E- , i.e. the basic flow part which allows for arbitrary vorticity
distribution is as large as the magnitude of wave orbital speeds the analysis
remains unaffected to the present order in the perturbation expansions. This
implies that the leading order growth rate of the instability is insensitive
to an arbitrary O(C-) vorticity distribution in the basic mean flow. The

"* significance of this result is that it assures us that the instability we
-- analyze here is, in fact, applicable to a wide class of basic mean flows.

4. Boundary Conditions

Boundary conditions at the free surface are derived by taking into

account the fact that the disturbed free surface is a streamline (kinematic
boundary condition) and requiring that the pressure at the disturbed interface
remains undisturbed. Both of these conditions need to be expanded in a power

series involving the small parameter E. We skip all details of these

-.. expansions and just quote the final result, viz,

%A/ (0) = 0 (4.1)

"w (0) = (v (0) (4.2)

where all quantities are dimensionless. We further require that all

*perturbation fields decay as Z--)0 - ,0 which implies:

WV, L~ ~-p 0as Z -ap - o (4.3)

Equations (3-19) to (3.22) and the boundary conditions (4.1) to (4.3)

now complete the statement of the eigenvalue problem.

5. Numerical Results

The eigenvalue problem which is posed in the previous sections involves

a fifth order ordinary differential equation with variable coefficients.
Although it may be possible to make some general statements about the nature

of the eigenvalues, we choose to proceed to numerical integration to find the

eigenvalues as a function of the nondimensional parameters governing the

problem.

We used a shooting technique to find the eigenvalues, and the inte-

gration was performed starting from a finite bottom at Z - -D using the

asymptotic boundary conditions. All computations were performed in double

precision arithmetic using a differential equation integrator DVERK from the

' IMSL library. The convergence of eigenvalues was checked simply by increasing

f. D. As the parameters of the problem were changed, we changed D to assure the

* iaccuracy of the eigenvalues found. Typical value needed for D ranged from 3
.- to 1.",;

I.-

* . . . . . . . * . . . . . . . .
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Figures I and 2 show the elgenfunctions for the first mode of the
instability. For higher modes, the function U has intermediate zeroes.

Figure 3 shows the depth variation of the two components of the vortex force.
It is seen that the transverse (y) component of the vortex force points U
towards the planes of maximum in the IV0) anomaly. This force decreases -
with depth and produces an overturning torque which drives the instability.

%, In this sense the present instability mechanism is analogous to that for
Langmuir circulations on a weak shear flow.

Figure 4 shows the variation of the growth rate of the first mode as
" function of the wave number k while F and R are kept fixed. It Is noted that
. the growth rate increases as k is increased. The slope of the growth rate

curve, however, decreases as k is increased.

Figure 5 shows the variation of the growth rate as a function of F when
k and R are held fixed. It is seen that the growth rate decreases as the

- shear of the basic flow is decreased. For very large shear (F-)0), the
*" growth rate increases indefinitely.

Figure 6 shows the variation of the growth rate as a function of R when
k and F are held fixed. It is seen that as the static stability of the basic
state is increased, the growth rate of the instability decreases. It is not
evident from the present calculations if there is some critical value of R for
which the instability could be suppressed for a fixed F. It is clear,
however, that if there is such a critical value of R, it must be a function of

. F. For F 1 1, this critical value must be much larger than unity. Very large
values of R are beyond the applicability of the present model.

Figure 7 shows how the eigenfunction 0 changes when the wave number k
of the perturbation is varied. As k increases, the vertical scale of the
instability shrinks, and the opposite holds when k decreases. For small k the
computational domain required to yield accurate growth rates progressively
increases.

6. Energetics of the Instability

It is instructive to now look at the energetics of the longitudinal
vortex instability and try to identify the energy source that the instability
feeds on.

The first thing to note is that the strain rate of the basic flow has
two contributions to it. A mean strain rate due to the shear of the basic
flow and an 0(E ) x-periodic strain rate due to the primary wave. The
perturbation fields which form the Reynolds stresses are

i) (0) = ( (o), E 0  (o), tt'O)

Now we form the energy equation from the governing equations in the usual
manner and then look for the balances that obtain at various orders of the

*" small parameter E . This analysis leads to two conclusions:

.. . . . .. . . . . ... .-.......... :+,.-..-...-.........-.-.-- .-..
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i) The O(E) Renolds stress E 4(O)){ O ) extracts energy for the
mean flow and feeds ,(u)2/2 kinetic energy leading to its growth on a slow
time scalei' E t

ii) The 0(ES2 ) Reynolds stresses E2 U(0) 1,() and .,..
-
2 V,(O)A.(l) extract energy from the primary wave strain field and feed

+ - (,L" . lt) kinetic energy.

Thus, we see that the instability draws its energy both from the basic
mean flow and the primary wave field. It is important to note that in a
description of the nonlinear development of the instability, one would have to
explicitly account for the energy drained from the wave field.

-" 7. Discussion

We have successfully analyzed a mechanism which drives longitudinal

.-.- vortices through a nonlinear interaction of surface gravity waves with a
strong shear flow. The instability mechanism has its origin in a vortex force

* -. term which shows its relationship to the instability mechanism of the Langmuir
circulations on a weak shear flow. There is, however, an important dif-

* ference. In the weak shear case, one can proceed to the nonlinear equations
governing the instability without having to worry about the drain of energy
from the primary wave field. This is no longer possible when the mean flow

• shear is strong. A systematic computation of the nonlinear development of the
" " present instability would reveal its potential ability to transport momentum

and heat downwards.

It seems that the instability mechanism we have explored is likely to
be of significance to more general flows than we have analyzed in the present
work. The generalization of present analysis to an arbitrary shear flow is

.. straightforward in principle. As a matter of fact, the present work was
initiated with such a motivation - but after developing a general set of

. equations it seemed appropriate to focus on a simple case first. For a

. general shear flow, one is faced with a more demanding algebraic and numerical
"* task. The primary waves are governed by the Rayleigh equation for the

inviscid problem. These waves are rotational with the result that additional
-.terms arise in the equations which govern the evolution of the primary wave

-.. distortion and streamwise vorticity. The influence of these additional terms
on the instability mechanism explored here is unknown at the present time.
Nonetheless it is plausible to suppose that there would be circum-
stances where these additional terms only lead to a modification of the
present instability.

S..Conclusions

1. An instability mechanism is established which drives longitudinal
vortices through a nonlinear interaction of surface gravity waves with a."-
strong shear flow.

2. The longitudinal vortices which arise have an essential anisotropy
in their structure with the windward anomaly much larger than the cross wind
anomaly. We note here Langmuir circulations on a weak shear flow do not
possess this feature.

- **** . :.*..\..*.
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3. The time scale of the present instability is much faster than the ,'
time scale for the Langmuir circulation formation on a weak shear flow.

4. The instability is essentially inviscid and its growth rate a WV
decreases as the static stability of the basic flow increases or as the shear
of the basic flow is decreased.

5. It is conjectured that the present instability mechanism may be of
significance in more general shear flows.
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FREE JET AND FRONTOGENESIS EXPERIMENTS IN SHEAR FLOW .6

Sergey I. Voropaev

1. Introduction

The problem of the development of a free round jet intruding into a

homogeneous or linearly stratified fluid was investigated experimentally in
Voropaev (in press). The Reynolds number in this experiment was equal to
Re - I) 102 (1- mean velocity at the exit of nozzle, T3 - diameter
of nozzle, - viscosity of fluid). The main result of the paper is as
follows. Just immediately after the jet starts, a spherical eddy forms on its
front edge. In a homogeneous fluid the cross size of the eddy increases
with the distance. from nozzle (Figure 1). In a stratified fluid this eddy
rapidly collapses and becomes two-dimensional (Figure 2). According to the
experimental data from (1)

lhf(2)

where are some simple power low dependent functions, I -
is the momentum of the jet, -J 4Q/tD"  , Q is the volume flux rate through
the nozzle, f is the density, N is Brunt-Vasaila frequency of the
surrounding fluid. These formulas, relating I to Q, assume a uniform velocity
(S) emerging from the nozzle.

In this paper we continued the measurements which were begun in
Voropaev (in press). Additionally, we simplified the experimental procedure
that permits us to test the conclusions of Stern's (1983) theory for

* propagation of disturbances on the jet: weak disburbances, when the flux rate

-= const and strong disturbances, whenSrapidly increases from Q_ to

"" Q+. In Stern (1983) it was shown that the propagation velocity of weak
disturbances is equal to the velocity on the jet axi Sand propagation velocity
of strong disturbances is equal to

vo - (V- + V+)/2 (3)

where V-, V r. are velocities on the jet axis before and behind the strong
disturbance. We tested this conclusion in an indirect way, using the

following assumption. The velocity V on the jet axis for a steady jet from a
point source of momentum located at x - 0 is (3)

From (4) for position of some particle on the axis which at t = 0 was x 0 we
have.: F. ,,r,

~~~~~~~~~~~~~~~~~~~....... .......... ,_. ..... .,....',.-..,....,..,,-.. ....... ........... ......... .... .... : : ; .. :......:
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It follows from the above assumptions that the measured position x of weak
disturbances should be equal to 7.

For the case of strong disturbances we have from definitions (see .
Figure 4)

V = dX./Jt, #O X, = dt (6)

So from (4) for any arbitrary Xo we have

____4_dX. (7)

. Integrating (7) we have

Xo- (X- + X+)/2 + const, .(8) K

where const - 0, because X-, Xo, X+ = 0 for t - 0.

2. The Apparatus and Technique

The scheme of the experiment is shown in Figure 3. The working fluid
was distilled water with a little amount of Thimol-Blue indicator. The color
of this indicator strongly depends on the Ph of the water. In acid medium the
color is light yellow; in alkaline it is dark blue. We added one drop of HC"
to the water in the tank and one drop of NaOH solution to the water supply
from the nozzle. After each experimental run we simply mixed the water in the
tank and it became almost transparent again. The method for increasing the U

"- flow rate is as follows: At the beginning of each run (see Figure 3) stopcock
#5 was closed and stopcock #4 was partly opened. After the stopcock #5 was ,
fully opened, the jet with a round eddy at its front edge started from the "
nozzle. The flux rate at this stage of the experiment was equal to Q_. 
Then we made a slight strike to the nozzle so that a weak disturbance appeared

on the Jet (see Figure 5). After that we increased the flux rate to Q+ by
fully opening the stopcock (#4) and eventually a strong disturbance formed on
the jet (Figures 4 and 5). Then we again excited a weak disturbance on the
Q+ flow. The experimental data discussed in this paper were obtained as the
result of an analysis of the motion pictures. From the movies we obtained the
motion of the shock and the positions of weak disturbances immediately before
and after the shock wave. The starting time t - 0 for every run was deter- -
mined with error +1/f, where f = 12, frame s-1 is the filming rate. The
error in the measurements of the position of the disturbance was approximately
+0.1 cm (correction for parrallax was made). To provide a better comparison
of the behavior of the experimental points with theoretical dependences we
corrected the measured x values in terms of a virtual origin located at -o

distance x (Figure 4) behind the nozzle. This origin corresponds to the
point source in the theory for Eq. (4), and the nozzle correction as given in
(4) is

44 AX Q -.I, .7) (9)

3. Experimental Results

The experimental data were obtained in eight series of measurements

(see Table 1).

7- . . *.. . - ..- .7 -.. ... . .. :
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NO D, Q- - Q~.cm cm.s 1  cm. s-

."1 
0.21 0.18 0.22

2 0.162 0.12 0.14

3 0.162 0.12 0.18
, 4 0.162 0.16 0.18 F.
' 5 0.116 0.12 0.16

6 0.116 0.15 0.17
7 0.085 0.08 0.10
8 0.085 0.08 0.12

Table I
Results for Leading Eddy in Figure 4

The experimental data for the cross size Y and length X are shown in

Figure 6. It is seen that points lie well along a straight line.

Y =C X (10)

The statistical analysis of the points in Figure 6 gave C - 0.14 + 0.02 with

correlation coefficient r - 0.96.

* .4. Propagation of Disturbances

As mentioned previously, the propagation velocity on the undisturbed

jet mentioned above was measured by introducing a small disturbance and
1 following the position X= of some characteristic signature of the dye pattern

(e.g. point b in Figure 4) which indicated the group velocity. The experi-
mental X+ values were obtained in a similar way from small disturbances
(symbolized by b' in Figure 4) after the flow was increased from Q - to
Q+. In Figures 7 and 8 these experimental values (X+) for the weak
disturbances are compared with values (X+) calculateT from (5). It is seen
that experimental points are in good agriement with calculated values. A
statistical analysis of the 232 points in Figure 8 gave

X+ - A1 + C1 X+ (11)

where A1  0.3 cm, C1 = 0.96 for r = 0.994.

5. Propagation of the Strong Disturbance

Figure 5 shows the completely different signature of the strong

disturbance which forms in between the Q- and Q+ flow. The position of
Xo of the nose of the shock was determined from the leading edge of the dye

pattern labeled 2 of Figure 5. The three sets of data were reduced according
to (8). Figures 9 and 10 show the results for one run and Figure 10 for all

. runs. A statistical analysis gave

Xo = C2 + A2 (X- + X+)/2 (12)

I r
where Co - 0.25, A2 = .1.008 for r = 0.998.



-150-

So, the experimental results are in agreement with the main conclusions
of Stern's (1983) theory.
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0..

Fig. 1. The jet front in homogeneous fluid: t 1 <t 2 1 D =0.162 cm,.
Q =1.6- 10-1 cm3.s-1.

p CL

CC

4Fig. 2. The jet front in stratified fluid: a -top view; b -side view;
w" < <t<t N -0.78 s-1, D -0.058 cm, Q -4.10-2 cm3.s-1.
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WAVES IN A POLYTROPIC ATMOSPHERE ,.J.

Charles Corfield

1. Introduction L

The present study has been motivated by a problem in solar physics.

Acoustic oscillations have been observed on the solar surface since the early
1960's (for extensive reviews of this see Stein & Leibacher 1974 and 1981;
Deubner, 1981). Numerical models calculating the linear eigenmodes using
spherical geometry and current models for the structure of the sun yield
results that are in good agreement with the observations. Less clear is the
mechanism by which these oscillations are excited, and how they interact with
the convective motions at the top of the convection zone (the oscillations are
confined mainly to a thin layer above the convection zone).

The most prominent oscillations have a period of five minutes, wave-
lengths of 10,000 km and penetrate 10,000 km into the sun. In recent high
resolution observations, the waves are seen in packets of half a dozen wave-

lengths (see Figure 1).

- - .~-five WUt 1UVL OSCIJdo14
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Since the sun has radius 700,000 km, which is much larger than the
length scales of the oscillations, spherical effects are small. This suggests
that in an analytic treatment of these waves, a plane parallel atmosphere will
be a good approximation, at any rate for wavelengths which are not too long.
For the sake of tractability I have used an atmosphere, which has a linear
(vertical) temperature gradient and constant acceleration due to gravity.
Physically this corresponds to having a constant thermal conductivity and

constant flux of heat through the layer (Spiegel 1964). However, in the sun

the conductivity changes with depth, though not by so much as to vitiate the

assumption of a linear temperature gradient. Further, it is assumed that the

atmosphere consists of a perfect gas (which is a good approximation). In

hydrostatic equilibrium we have pressure (p), density (p) and temperature in

the following relation:

p , "r" v,,,4 ? T' - (i.z) ::ii
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where m is the the "polytropic index". Any system which satisfies (1.I) is
known as a "polytrope". The polytropic atmosphere was used by Lamb (1908) to
discuss long atmospheric (gravity) waves. Spiegel and Unno (1962) used it to
estimate convective growth rates for unstable gravity waves of large wave
number. Spiegel (1964) went on to investigate the effects of radiative
dissipation on the convective growth rates and found an acoustic mode which
became overstable (i.e. growing amplitude) when he assumed a cooling rate
proportional to the temperature fluctuation (Newtonian cooling). Physically,
this case corresponds to disturbances whose length scale is much less than the
photon mean free path; such disturbances are "optically thin". In the other
limit, where the photon mean free path is much less than the length scale of Wb

the dizturbances, the cooling rate (Q) is given by

4t( V.7

*. where K is the thermal conductivity and 0 is the temperature perturbation;
these disturbances are "optically thick". There have been several numerical
studies of the effects of thermal dissipation in the optically thick and thin

t*.. limits (Chitre & Gokhale 1975; Jones 1976; Antia, Chitre & Gokhale 1977),
which all have their problems. Jones (1976) also carried out a semi-analytic

treatment by taking the solutions to the nondissipative problem and inserting
them into the energy integral for the system to estimate the growth rates of
acoustic waves. His results agree with Spiegel's in the optically thin limit
and he finds a subadiabatic (i.e. the medium is stably stratified) over-
stability at the small wave number limit of the acoustic waves. In the -.-

optically thick limit his analysis is faulty because he fails to take thermal
boundary layers into account. To date there has been no satisfactory analytic

.2 derivation of the growth rates in the optically thick limit. In the optically
thin case the only analytically derived result is Spiegel's (1964) for the
pl-mode (acoustic modes are labelled by an integer N and the Nth mode is
called the pN-mode, where N - 0,1,2 .... ), which is trivially generalizable to

* higher modes, though not to the Lamb wave (the lowest acoustic mode).

In this study I have generalized Spiegel's wave equation (Spiegel 1964)
for optically thin disturbances to disturbances of arbitrary optical
thickness. The equation is then analyzed in the case of constant cooling
coefficient q, so that his analysis may be extended. I have not completed
analysis of the optically thick disturbances, which involve thermal boundary
layers, so I do not present any results here. I have, however, gone on to
obtain amplitude equations for weakly nonlinear disturbances in an isothermal
layer and I anticipate that the analysis will go over to the polytropic case. 

A,

2. Linear disturbances influenced by radiative dissipation

2.1. Equations of motion

The equilibrium state of the atmosphere is taken to be

U I. _C . ) ."' ". .-.

biq

0~~

+.
. . . . . . . . . . .. . . . . . . . . . . . .8F.
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Where F is the heat flux through the layer, K is the thermal conductivity, '
R is the gas constant, and p ,- are the equilibrium distributions of the
thermodynamic variables. I have taken K and F to be constant and following
Lamb (1945) I measure z downwards from the top of the layer, so that the
temperature gradient is positive in this coordinate. Define

It follows from (2.') - (7.4) that

where - I (7.6)

Note that 0- => - oo which would correspond to an isothermal layer.
It is convenient to define

S+(.

so that r.( • When Y; r' the medium is stably stratified and when
,- F it is unstably stratified.

The linearized equations of motion for disturbances about the
* equilibrium state are:

"?p + -+o (dp +Wv) (a)
- -.- (2.9i) ."

where O= is the (adiabatic) sound speed, ' is the ratio of specific
heats, and -p p, 8 are the perturbations of the thermodynamic variables. The

third equation is the heat equation which takes into account the leaking of
heat due to radiation. The operator Q is in general an integral operator

* acting on the temperature perturbation . In an homogeneous medium it takes

the form:

Q(G)a.

where i- 1) tr a- rit 13

-. w )i . •-4-'-,

4 is the absorption per unit length and i" is the Stephan Boltzmann

constant. (See Spiegel (1960); Spiegel & Unno (1966) for a discussion of the

I ... . .. .. . .. .
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radiative transfer problem.) The integral expresses the balance between the
heat radiated away (the - S() ) by the fluid parcel and the radiation from
other parts of the medium absorbed by the parcel at x (the 4C4X?(-4CIEI)/4nII1' ). :-*ES

The (lsrl!I'is the geometric attenuation, the Qxp(-4 0i) is the attenuation
due to absorption of the radiation before it reaches x, and the factor 4C

represents the fraction of radiation arriving at x that is absorbed there.
When - is small (weak absorption) -

9P Q ,. s

i.e. when the mean free path of the photons is large we get Newtonian cooling.
When K is large (strong absorption)

i.e when the photon mean free path is small we get diffusive cooling.

. The linearized equations can be reduced to one equation in one unknown
(see Appendix A), which can be identified as the rate of change of internal
energy of the gas multiplied by a normalization factor. The resulting
equation is:

+~~~ ~~ ~ 1) ++ 4( D V°2

where -v , '-"

O~-= ka 4+916c

2o L.2k~ + n+?(O1 oC(~

0oc + W1( + 2) (?. 19)- , l-I

(.20)

. The equation (2.1:7) can, in principle, be integrated and the dispersion
relation follows from applying suitable boundary conditions. In the case of
Newtonian cooling with constant cooling coefficient:

Q(G)

(where q is constant) equation (7.I) reduces to the equation derived by

Spiegel (1964):

"" -(v + - ) ' - [--) (J.2 ,) +

2.. I E - .

... . . . . .,. *. 4 . .5 .. .. . . :-. . .. .. 5*,. . ..S . . ..
.2-, ',.' .''.. '. .' ." .' .' .' ..,. .. '." .2 ."" " '. " '.,"". "" ." ."", ":". ". .-". •. : .' ." ." , "'.-. '. . '.-. '."."' " "./ .4
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where '~

or 
W

CA) (222~~=kd , -

* and d is the thickness of the layer. The vertical velocity, w, can be written
as

* The boundary conditions that I have used are

pw 0 3 ~ ,I (2.24)

* The solution of C2.21 ) which satisfies the top boundary condition is

* where
A-+ j-a3-0(~VV+')W 7.

3 = (2.30)
0-+. L3

and M(a,b,x) is a confluent hypergeotnetric function which has the following
power series representation

(a ,x+ i + + ( * ) a~ +~ .* .

b~b~i) Z! b(b4l)(b.+2) 3!

which converges for all finite x, provided b is not a negative integer or
zero. On substituting (2.23) into (1.26) and applying the boundary condition

* ~at =1 the following dispersion relation is obtained (see Appendix B). .

a-sov L ((1)2 ~b-,~ ~O~-2M8b ~i 0 (2.3?)

where 8 A-3 I(.) !

b= 2 -13(.3)

(In this form it Is easier to handle than Spiegel's version).

. -> 7
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In what follows I have assumed that

i.e. the cooling time due to dissipation is much longer than the period of the
oscillation. I have consigned the mathematical nitty gritty to Appendix C.
Further, since w is small, it is possible to write o- as

(.36)

2.2. The large wave number limit

The dispersion relation (1.32) is satisfied by

Ma -c or 8 -N , N o,1, 2,...

The same would be obtained if the rigid bottom boundary was replaced by a
radiation condition that the wave should decay sufficiently fast as z - oo,

-2-- -x is the Lamb wave, which in dimensional units has the dispersion
" relation

where 12 is the frequency. It is interesting to note that (2.3?) is
independent of the stratification (i.e. no dependence on m). I have compared
this result to solar observations (see fig X ; the Lamb wave is the lowest
of the parabolic arcs) and I find from some measurements taken from the figure
that

12 /k- 2. 6' r 2

. compared with the actual value of the surface gravity which is

The Lamb wave is an acoustic wave whose motions are almost entirely horizontal
and corresponds to the fundamental mode in a conventional wave guide (which

*" .*has no transverse component to its velocity field). The Lamb wave is damped

.,.

When a = -N the other acoustic modes and the gravity modes are .4

obtained. Let

'Y~yn "-'.71'2 ('2.42)

* * 4 . . . . . . . . . . . . . . . . . . . . . . *
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then the dispersion relation for the acoustic modes is

+ (2-4)

and the dispersion relation for the gravity modes is

Note that curves defined by (2.4t3) and (2.44) are parabolas. This contrasts
with results from the isothermal atmosphere where frequencies of the gravity
modes are bounded by the buoyancy frequency and the acoustic modes, for fixed
vertical wave number, are hyperbolas tending to x2 = ck (see Figure 3). In
the polytrope the gravity waves have no upper bound to their frequencies
because the buoyancy frequency l

N2(F) I I M 3 0- -f (2.45)

becomes infinite at the top of the atmosphere (z = 0), so that waves confined
to a thin layer at the top feel large values of N. Note also that the gravity
waves go unstable when Y < r

The correction due to thermal dissipation for the acoustic waves is

0- = - t ( I) Md. - + (yn. 2N+') (2. 46)

which differs slightly from Spiegel's result (Spiegel 1964) due to misprints.
Overstability occurs when > O

+V 22Nt-3(

In other words, the layer must be sufficiently unstably stratified before the

acoustic modes may grow. Only when Y ' I can all the modes grow, but in that
case the overstability would occur without any stratification, as is explained
later.

The correction due to thermal dissipation on the gravity modes is

= -v [Y -I. -tI..rt + F
4 - (2-4T)

+-]P
which is always damping.

2.3. The case when o oc x >P .

In this limit I have looked at acoustic waves which propogate through-
out the layer rather than being confined to the top. The lowest mode is when
the turning point coincides with the bottom boundary which gives

Cr,,

= - (---LI 9)

(--.0)

.• .... ...

___- ____- -" . --.. _ , ' .'. -' . L- , .. . -°' . . '...-. . . ;- . ',-7*. ' . . .. *.. ., ," ." .-. "," ,"-'r . '''
"
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These waves are always damped unless Ya' ( , the significance of which is
explained later.

2.4. The acoustic cut-off

When a -. 0 (the long wave limit) the frequencies of the acoustic
modes (with the exception of the Lamb wave) tend to finite values. These
cut-off frequencies are given by

S,,,, (2• 1 )

where AIj, is the jth zero of the Bessel function J,- . The correction due to
thermal dissipation is

where

t i -F J.1 X

has been defined so that it is a positive quantity. The waves are overstable
when • O, I.e.. ,,N

, 1-+' (2.), :-

I find that for f1 3the lowest acoustic mode is overstable even when the
medium is stably stratified (i.e. v > f' ). It should be noted that, even
though it is unphysical in this model to consider disturbances whose length
scale is much greater than the layer thickness as being optically thin, there
is nothing unphysical about the mechanism of the instability (as is discussed
later).

2.5. The Lamb wave and gravity waves at low wave number

These waves have 0: o t . In the case of the Lamb wave

,. ,, -.' "';: " .

while for the gravity waves C:2 - 4vi(f- t'y) (I
Aj2_

where Ajyn is a factor defined in Appendix C. Note that these waves are
unstable when Y <r . The correction due to thermal dissipation leads to
damping in both cases. .-

2.6 The structure of the nondissipative motions

It is instructive to look at the form, which the nondissipative motions
take, in order to see why the dispersion curves take the shape they do, and to

see how the acoustic overstability arises. The mathematical details are in

• 't . ' . . - ' ' . .. * 4 - . - . - a. -' . '. . '. " -' . '. . .. . .. .. . ."" '" . a . * . . "
. . ... . • . , .. . :_ ., -,._. ..,.,: .- .,. . , •, ,. : -- .. - , =. • , .. .- , '-;v t;.,." ->..-,,".-i. ..? • - ..I ,.L ,- ...' - .-". .-A ,-. - .



-,- - - ;X.. a

-170 -

4 Appendix D. The variables that I have used to describe the motions are the
divergence of the velocity field ( X ), the vertical velocity (w), and the _
temperature perturbation ( G

W %ay r -- <.,, "[ r.i+M (an<'. ) 4 (,-o.)o. M ( ,.] -ZO€ )
,' . . '- . ' -

e = -- ), [c )(M.) M(awi+?,2aC) - (rRO V, t)M (a.vA+.2.,)+

where due regard has been taken of relative signs, and M(a,b,x) is a confluent
hypergeometric function. K

In the large wave number limit the Lamb wave takes the form

e 0 e - = (.6 1)

*5 In other words, the vertical velocity is much weaker than the horizontal I
velocity, and the wave is concentrated towards the bottom of the layer. For
the remaining acoustic modes and the gravity waves

a= -N N = o, 1, 7, (2.63)

Ix Fr4 (2 )
((2.60

eAQr~ Fe(os)(2.66)

w~ara- Pw , o pq re pojSojta6.

The function M(-Nm+2,z) is a polynomial of degree N with N roots in z > 0
* (It is in fact a Laguerre polynomial.) Its exitrema vary as

(see Figure 4). In other words the modes have an oscillatory vertical
structure until the turning the turning point

rA (242)

after which there is an exponential decay. So the wave is confined to a layer

of. . . . . .. . . ..
(N vA 2 Cd 9)i i . . -" " " t " - "' - I

"
"% "%
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It is now clear why the acoustic and gravity modes take on a parabolic
structure. In the case of an acoustic mode the usual formula

is now modified by inserting the value of Ct that corresponds to the depth to ,-'.
which the wave penetrates:

. ~~~C c z c ,(

Thus
A--• Z c k (2. z) '

In the case of gravity waves the usual formula

04 ~(2-13)

is now modified by inserting the value of N? that corresponds to the depth
to which the wave penetrates:

N' c oc (2J

Thus

oe-f ( - "  
-' v -

• l At the low wave number limit, the acoustic wave exists throughout the

layer, and

w%

M4(a VI +2, 20-

,G ~- ('- )4(a,m+2,2&) - 'zl(a, +r,2 ) (2.?~.(2.72)

(see Figure 5 ).

2.7. The overstability mechanism

V The mechanism by which the acoustic waves can become overstable was
described by Lord Rayleigh (Rayleigh 1878):

"If heat be periodically communicated to, and abstracted from a mass of
-' air vibrating (for example) in cylinder bounded by a piston, the effect
" produced will depend upon the phase of the vibration at which the transfer of

heat takes place. If the heat be given to the air at the moment of greatest
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condensation, or be taken from it at the moment of greatest rarefaction, the
vibration is encouraged. On the other hand, if heat be given at the moment of
greatest rarefaction, or abstracted at the moment of greatest condensation,
the vibration is discouraged."

This may be expressed mathematically by forming the work integral of
the linear equations of motion (Simon 1957). With the form of dissipation
that has been used in this study it can be shown (Jones 1976) that the growth
rate has the same sign as

where i is the displacement and e is the temperature perturbation. In the
case of an homogeneous fluid the elementary theory of sound gives

,.. V. V 0 GV._ o- v=,, -r/ :";

,!( 7. G V/)

which is positive for Y 1 i.e. the gas cools as it goes into compression.
In which case no stratification is needed to produce overstability. In the

'- polytrope the stratification can make the sound wave go overstable by ensuring
. that as the wave goes (locally) into compression the fluid is displaced into a

region where it is cooler than its surroundings, so that heat leaks into the
compressed fluid; and when the wave goes into rarefaction the fluid is dis-
placed into a region where it is hotter than its surroundings, so that heat
leaks out. This is well illustrated in the lowest acoustic cut off mode where
the correlation between 9 and V.1 is clear (see Figure 5).

--- It should be noted in passing that, if the polytrope is truncated (i.e.
does not extend all the way to zero temperature), it will be more difficult to

.q get overstability, since the truncation will 'remove' the lowest modes which are
* the most easily destabilized. This effect has been observed in numerical

studies (Antia, Chitre & Gokhale 1977, Jones 1976).

3. Weakly nonlinear waves

- 3.1. The evolution of acoustic waves

The generic equation for a weakly nonlinear wave train in a non-
dissipative system is the cubic Schroedinger equation (see Whitham 1974). In
a frame moving with the group velocity the disturbance may be written as

-rY,) F(t) stvt(w~ Ekx + e(7, -T)) t3.0

or equivalently as

where , T are the slow space and time variables of the modulation and
F( t) is the vertical structure of the mode. In Appendix E I have derived
the cubic Schroedinger for a neutrally stratified isothermal atmosphere with

• ,;-

".' '';-'''''.' -' . ,'. " -"."". . . ."." . .- . .-. ."-". .".. ..".".. ...'-.'-..'.-" -'''..''-.."" ."."."'."."..".. .-. ,....,.,.......• ,""
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.d* rigid upper and lower boundaries. The resulting equation for the complexamplitude may be written as

where h is a function of 1 &A . It has solutions of the form

S~a = C(hV) (3 4)

where led 2 =' * ( h >o). .-'-

I anticipate that the polytropic atmosphere also admits the cubic Schroedinger
equation for its acoustic waves. In order to incorporate the effects of '.

• .. dissipation I have drawn upon numerical results from Antia, Chitre & Gokhale
- (1977), pending an analytic treatment. In his study of a polytropic layer

between rigid boundaries using thermal diffusion (as against Newtonian
cooling) he finds that the growth rate depends on the wave number in the -
following manner:

Growftt

* This can be incorporated into the amplitude equation as additional linear
terms. I have made the approximation IL

where o, and -d are constants. This suggests the following equation:
0.

e Bretherton &Spiegel (1983) have studied the equation".-

in connection with double diffusive convection. See Figure 6 for an , '

. i.. example of the output. This is reminiscent of what is seen for the five

minute oscillations on the sun. i

71

67°
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3.2. The evolution of long gravity waves

w As an example of a different amplitude equation for weakly nonlinear

wave, I have derived the KdV equation for long gravity waves in an isothermal
atmosphere with rigid upper and lower boundaries (see Appendix F). Let the
disturbance have the form

LI. LL~,4~T ~(~ (4~~,4~-r) IF(t)(3)

for the horizontal velocity, where x,tT are the fast space, fast time, and ..

slow time variables. I get two equations

GG-. = L2 3.9)

2 G - + 873(QX GxxGt + EG*t -E G~t. (I. o)

where E is a stability parameter such that the layer is stably stratified when
E is positive and unstably stratified when it is negative. In the case that E
is positive it is possible to eliminate )t from ( 3.I0 ) by setting

&-(x,i ,T) - G(X+cT) ,u4 Uh,,i T-) X 4. .i-C ,- , U3.H)

2 E
where c ! so that

U-r + 6UUx + cE U x - ()Ux 0 (3.12)

The UX term can now be eliminated by setting - - , 2U (3. 13)

U- + 6Gx - = 0

which is the KdV equation.

If, however, E is negative (3.9) is elliptic and U blows up on the

-'" fast time scale t. The nonlinearity is too weak to contain the instability in

this scaling. In order to halt the run away, energy considerations suggest

that the velocity field should be scaled an order larger than it has been,

though this has not been carried out in the present study.

The KdV equation for compressible gravity waves contrasts with the

result for an incompressible fluid, where the first nonlinear term is cubic

and the modified KdV equation results. This is because in linear theory

V. V= 0 i.e u.k = 0 which means that u.Vu = 0 for the linear components of

the velocity field, and so the quadratic term vanishes. The question arises:

where is the crossover between KdV and modified KdV ? This awaits future I
analysis.

I . -,-.

/'

.....................................," ........................................................................-....,....- -. . - -. , .
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.4

4. Conclusion

The polytropic atmosphere is a good testing ground for fully

compressible dynamics in a (strongly) stratified medium. Although the

mathematics is more involved, it is still tractable. In this study I have

only begun to scratch the surface of the nonlinear dynamics; I hope in the not-

too distant future to be able to get amplitude equations coupling acoustic and

convective motions. The connection between acoustic and convective motions is

important to the understanding of the dynamics at the top of the solar

convection zone.

On a more general problem, it seems that whenever simplifications of

the full equations of motion are made, it is to filter out high frequency -:0
motions. Implicit in this is an assumption that they average out to nothing

on the slow time scale(s). Is it possible to do the opposite process and, in

the case of the polytropic atmosphere, arrive at an approximate set of -. ""

equations which at leading order include the acoustic waves, but not the "

gravity waves and at a higher order connect the two?
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APPENDIX A

The linearized equations of motion (2.8) - (2.11) can be written in theform: i

321 x 9W +~ (Al)

4 V W+ ~3(A2)
2,,, : g w + X 3 Nei -(-091% + (I (,A3)..

where C7 + (e), = R H (4F

(P -- = A4:

It is possible to get an equation for W in terms of r by taking the

divergence of equations (Al) and (A2):

( -= -14cw (U-I) 3  + H (A5)

;i. +n
where the disturbance is taken to be 9 . The cleW may be

eliminated from (A) using (A3)

W " +1 " + (A6) 10

(A3) and A6) can be combined to yield an equation for X in terms of MY

in4 ,+ (n, (A7)

To make further progress, the equations for the thermodynamic variables -
must now be considered

(A8)
hp + 3.

p+ , - (A9) .,",.v

At .V Tx (,,.o) .. :?
,-+9w 

-:a[

I".". ,, ' i;.* . ',, E** b* .* b.) ' 3 _,_ . .''.,.,',,'...% " . *-"." " ." **" " ." ,"•" . "' .' "*' - . " "* " "-
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The equations represent the heat equation, continuity equation and equation of
state respectively. The pressure and density fluctuations, j and e may
be eliminated from (AO) using (A8) and (A9): Li

nG T=-3' IW-1 (All)

Since St- c*X + 1?(re), it follows from (All) that

W v r"'r +i re (A12) PK

where No-~i (and m + 1 ).(A7) can be used to eliminateX

):~ ~ G .N I[ + #F. .V + if V,,- ) -? ,,.' ., (.'OI -3u) )::::

Now let - ,and the following equation for may be obtained:

U nL z T + 2 i.-&0)~ -z Ju
(Al4)

(where V =  i) This is equation (2.17).

APPENDIX B

Spiegel's dispersion relation (Eq. (82) in Spiegel 1964) is

,, 2,,E ( -- ,.-, Z) + - + O(o.- o-) ]A(A-a-,'2-r ,?ac) =O

which may be rewritten as

,r2[ Za M(a+Qb'+1,2a) + (6-,)M(a,b,2A)+

+ a(C- o- ?) M (a,b,) 0

where .,.

The relation

M(a+ I,b,) -M(a,b,e) b -..:

* - -~ ~ -~ .. -.. *o
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may be used to rewrite (Bi) as 4*iI

[ aAA(a+1,b,2L) + (b-i-a)m(ab, )] +a(-o-2)J(a,,?o) = O (B4)

The relation aA(a+l, b,a) + (b-1 -a)M(a,6,?) (b-I)A(e,b-I, )

may be used to rewrite (B4) as

" - + a(o.-o-) M (a,b,a.) (B5) _

It should be noted that in Spiegel's equation (81)

P_ a r '

hence, the complete dispersion relation is

-7 -(b ,C-I) M (a, 6- , 2a) + CL -O ) - Ca, 2a)] -- (B6) " :

which is equation (2.32). See Abramowitz and Stegun (1970) for details of
confluent hypergeomatic equations.

APPENDIX C *.

The asymptotic results used in this section can be found in Abramowitz
& Stegun, unless otherwise stated.
Cl. The Large Wave Number Limit

When a is large, the following limit is appropriate

?a a-b
M e 2.) (Cl)

*in which case (2.32) becomes

a-, -- b) a' -- " -"' (2o) , Lao- + aja-o-').1 "" (c2) -.

This is satisfied by putting

- -N , N O,,,.... (C3)

or d- tr C (C4)

. In the latter case, the singular nature of (C2) when (rl - -Q is more apparent
than real, since we are dealing with an asymptotic representation, not an .

• ..,. .. ...-......... ,, .-.... .-. - *. -. . . . .- , . , , ... , . . .- -... . . . .... . . ..-. ,- , - , . .. ... *,--.., -
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exact one. The C2 -CL relation corresponds to a- 1 and so it could be
included in the classification scheme given by (C3). However, to get the
corrections due to small w on (C4) it is necessary to use an extended form of
(Cl):__(-

__(6_ aX - P WI
2,xb, o . 2 o. 2 o4

• AA(a,20) ~ (a) P- C2 + , a .

in which case (2.32) becomes

Zo~"+ o~(.-as) + au"b-I-a)(0-a) + ka(&-oz)(6-a)(I-a) =0 (C5)

(C3) can be expanded using (2.29), (2.30) and (2.3) to yield

4' 4 (M .I) o- - a(V-12) t r2 + (M 3 +2N)acu, + 0&(m- - (

Let
o- = + (C7)

= 2(m ) (C8)

• .then

The upper sign corresponds to gravity waves and the lower sign to acoustic
waves. The gravity waves are directly unstable when 14 r' The correction '. .-.
to the acoustic frequency is

Y +/~+$~ ~ +....L .. -I...°g.Y P + ? f/Y + ,,,+--, Y 2Z~i- + ,+
- -- V"+- (ClO) "-.

' Overstability occurs when the numerator is positive, which requires

., I I 2m+2N+3 (Cil)

The correction to the gravity wave frequency is

2A ,.. I Y -l + +' '
. .%. 4fI ,L-
,'" -=_ - - . .(C12)

. .. . .. ,'..

. This is always negative.

When 1 1 all the acoustic modes become overstable, but the lowest
modes have the highest growth rates. For large N.'

a - )(C13)

OT 4(N-1

*p ** " *.*. . --... ,b"*** .- . -.-- ,"-. - . .
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Returning to (C5) the leading order frequency is given by k

WO - (C14)

The O(w) correction is obtained by substituting (2.33) and (2.34) for a
-p' and b. This gives

2d (C15)
This wave is weakly damped.

C2 The Limita-.o,

In this limit I have examined the form of the dispersion relation when
the turning point is near the bottom boundary. The appropriate asymptotic
representation is

A(a, 6, e) .N -2a) '  (b)[ A%(Q;co,(ant) +Slt(b)sin(an)] (C.16) -

where

,( -'Za) "  6 - +/la (C17)

When the turning point is below the bottom boundary the wave is vertically
- propagating throughout the layer. The lowest such mode is given by

2a t- 4a - 0 (C18)

.e (c-+ w) + '-3 - 0 (C19)

To leading order in w& this gives

OI
- (C20)

with a correction at O(tu) of

(C21)

Hence, overstability only occurs when

~' I (C22)

C3 The Acoustic Cut Off

In this limit the frequency remains finite but the wave number goes to
zero. This means that

am , () o.a. o... 0 am 4 0 (C23) .

;: :::
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The dispersion relation (2.32) reduces to ..- &

1°

o-'(,b-)M(a, 6- ,2 ) 0 (C24)

The appropriate asymptotic representation is

" 6- -  Z '(C25)

In which case (C24) becomes

J b- 2 (2 F 2.a) (C26)
I 

°
,

a,b can be expanded in powers of w using (2.29), (2.30) and (2.34):

va. " ( , 4 (C27)

b-2 Yn+ (C28)

(C26) now becomes

J. + a JM 0) + i(t +o (Y-1)) X (X) (C29)

where

X= Z L[- - (C30)

(C29) can be reconstituted as

.- tA |,. (X)

X + 0(, + I(,)x + -  J (C31) S

L- Let Xjv be the 3-11 root of Jm(x) then

+ d 3 E(V- - "(C32) J J p.. &

where
-,-.,.'d

.a. -
f ~~~ J -A mX ' j )  (C33) :.''

°.,,.•

. .. .. a. . . . .a1 -'- - . a - j
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To leading order (C32) is

-- - , vti,,, I (C34)

with a correction

Cq (C35)

Hence, there is overstability if

+2'j
) '1+ (C36)

In particular for j :

a' ..

1 1.27 1.67 2 -.-
,% :.

3 1.16 1.36 1.33

5 1.08 1.25 1.20

" For m . 3 it is possible to have subadiabatic overstability.
For largej:

jm "j- MT , '- (C37)
ir -i-

S++ (C38) '

For large Yt and J -1:

r"i~m "" £. , 2 ,,, v I.96 'n ' + 1.03 m "  + (C39) .

2r- + .+ rn .- 6 vvvs + .03 + OC') (C40)

(Asymptotic results for rm are not given in Abramowitz & Stegun, but are
not difficult to derive.)

C4 The Lamb and Gravity Waves at Low Wave Number

In this limit the dispersion relation (2.32) becomes

(b-1M(aA,-l, 2a) + - M(a, 6, 2a) (c41)
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where

9aO. 0() a aa -C as 0." 0 (C42)

The appropriate asymptotic form is

Hence (C41) can be rewritten

"" ~(-za,)y J,,., (2,4=-'a') +  ',Jb-, (Zr-Z-a) (C44) -..

The terms -2ac and b can be expended in powers of ' using (2.29), (2.30),
* (2.33 and (2.34). To O(w) (C44) becomes

X [- '(I + 2)-.J. + 3i'[.x- zx,+2a,)3 - (C45)

___ (I% -iv- + *(1+2o~ M

To leading order this is

-,(I x J ,x) 0 (C46)J.M (x) JM,- ,(,,) 0j

where

-Z ...- (I - /) -- (C47)

The smallest root of (C46) is the Lamb wave, which for small x is seen to be

.. -(C48)

*. ,(take the first term of the power series for JwX). The remaining roots of
(C46) are sandwiched between pairs of zeros of JA and Jm£t . Let these be
denoted by Ajm , so that

Ajv (C49)

These are the gravity waves which are directly unstable for 1 fl .

A~ 0(w) Cc4S) is

J., of) - XJVi(X) + T,(!- " (C50)

L4- LJ()+ ~JW Jq(X) - jZLX jwdC - ____W +

+ X "
* N,..'.: --

:Z : : ~~~~~~~~~~~~~~~~~~~~~~.. ... : . ..... ; :..,... . . .; - .,.::-:. ::.::..-:.L, ;.:..................,-....



Using (C46) allows (C50) to be written as

= -Z + I - ,. (C51)

When x is small the Bessel functions may be approximated by the first terms in
their power series, in which case (C51) can be reduced to

0- 
%

A= -tL) (C52) -

• i.e., the Lamb wave is damped. For the gravity waves x is finite, but
(C51) may be simplified by taking I- rl/j to be small, in which case

I * X * J(-Xl - ' 1 (C53)

* since J 4 () % - 0 from (C46). However, '3, o and we see that the

gravity modes are damped.

APPENDIX D

Starting from Spiegel (1964) a few trivial manipulations on his

equations (78) and (81) yield expressions for X and w . His equation for
can be simplified by using the recurrence relations as in Appendix B.

- So
.2 0,""2*.y (2t)YA o-7 &

./W = -"- a-) (w'Mt a,YAtl, zi) + tM(a,vA+7,2.)(a-ar4)o 3 (Dl)

,L') e.-'$(a, .t2o'a ) (D2)

"* where

Ta- ' (o-ir) + ( + I (D3)

An equation for 0 may be obtaind as follows: '

In the absence of dissipation, the equations for the thermodynamic
fluctuations are

. ..2.:,
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= /P + f/ (D6)

(D4), (D5) and (D6) may be combined to give an equation for 8 in terms
of w and -

-= " - X - W, . ] (D7)

_ and w can then be eliminated using (Dl) and (D2). After some tidying up K "
and replacing It by i

L2 a
9-(-- o*) Ma v." a.-a7 M( A2cc 2oe)e [ -, - (D8)

-- ) m-, (a, w',2af ) --.-a,w, 2)

-C ('-1)( ,)(2o.)M(a,4,7o, ) - (D9)

In the case of a Lamb wavela

a- 1, 0-' -a (Dl0) -

:. and the expression for w simplifies considerably:"i:

- -(D13)

away from a thin bounday layer at the bottom. Expressions for %X and 0) may
be obtained by using the asymptotic result

MCIb,2Z) .b)?-be-°D14

*- S

: - Ths epresionis symtotiall vaid n th Inerir o thelayr : 13
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so that

"K (%o' 
(D16)

G ~ ~' Dl

in the interior of the layer away from both top and bottom boundaries.

For the remaining acoustic and gravity modes

a -N, N 0, 1, 2,.. (D17)

so thatL

(N) I (-N)(-N4I)Z2" (N(wO.. -)~

+(NIi b 4!FW + bb*+ 2! b(b+')..(bN i)N. (D18)

*Therefore, W and e are proportional to COX as multiplied by
polynomials of aC

e~ e.(D21)

where L (m~l) wta~ is a Laguerre polynomial. In the limit a~- 0 for
* the acoustic waves, the leading contributions to (Dl), (D2) and (D9) yield:

M- ~ AI S (D22)

Me M(8'A+ ?O5) (D23) '

0 (-?) AA(a, M47,ZOS) - V c~ (D24)

The appropriate asymptotic form of the confluent hypergeometric functions is

'N -b).

so that

* ~w r~~4)-8~ 2 J,(z r-faa) (D26)
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r(r I)(-ZacL0 2W J.. IrFx (D27)

~~~~o Yy V ( (m. z)(- la -s) (.,7 ) D28)

F. r (m (?o j (z-zaac
APPENDIX E

Since acoustic waves are weakly rotational, unless the stratification

is very strong, it is reasonable to let cyd! w 0 , which means that the
buoyance frequency is zero and the acoustic waves can be completely irrota-
tional. In order to ease the analysis I have taken the equilibrium layer to
be isothermal and confined between rigid horizontal boundaries. The assump-

tion of neutral buoyancy is equivalent to 1 1. The equations of motion

are

= -V'+~.e(El)

+ pv. 0 (E2)

0 =(E3)

(E4)

Since

S (. (E5)

and -1in, it follows from (E3) that

0 (E6)

In equilibrium the pressure and density are distributed as follows:

cc e. , 7oe-e/H (E7)

in which case = in the disturbed fluid. Equation (El) may be
rewritten as

Let

e- U (E9)

then an equation for 0 can be obtained by substituting (E9) into (E2) and
(E8) and eliminating ? between (E2) and (E8):

D'- ) O + - (El0)



.1 -190-

Nov adimensionlize using g and H to define time, length and velocity scales: 6-...

,,.±) , - (li)N
(ElO) becomes

beL +(E12) L~
or, after rearrangement, r

- z ) V.V (vo), (E13)

The Long Wave Limit

I Let the layer have its boundaries at

.=-0.. (E14)

so that at the boundaries

= O (E15)

In order to get an amplitude equation for the gravest acoustic cut off mode

the following scalings are appropriate

p -~6~, c~ 6x ,t' *Q~r ~;-)i~(E16)

Write D for ; , then (E13) bcomes

" (PO)l + .t (E17)
* •. { Z(¢)v (ve)2  .

where V (E) I' D) and the disturbances are assumed to be independent
of . Let

then (E17) may be expanded as follows:

• (0): o -€o 0 (E19)

OW Vol +-4Do - %' (E20)

* (F?): -D0 LD~ + 2) - -Do[ +toCD,
- + i' L (t90)3 ] (E21) v ,

r.7" 
•
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with boundary conditions

-4DO, .. =0 C( O /t (E22)

At 0(1):

Ax, 42 5)S', (E23)

where

C (r 1 + 2 u +e X,) (E24)

At OC):

(E25)

It is only necessary to find a particular integral of this equation, since the
complementary function makes no contribuiton to the solvability condition
applied at the next order. One particular integral is

= W3 A2 P7 c mI -cos24& +s2 2 ] T (E26)

At O (61)

The solvability condition at this order is obtained by multiplying
S (E21) by

4 tj.~ (E27)

and integrating from =0 to TrP. (The on the LHS of (E21) is

replaced by z ). This results in two equations for A and O)which are the
coefficients of sin X and cos'C

Axx- AOJi - -A r + w4o'A 0 (E28)

'A fx ?Ax Ox + 2wA-r 0 (E29)

where

-~ 14 I; 143 -1 OZf to (i-q~2
-, : (-16 1+ 1t - ) 1I ( (E30)

.. ,.-Let

'2r " w a8 A e- 0(E31)
L. ... ::'
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then

13l-,. + +x I IS" 1r$21 B C)v.2

Providing 1 is not too large, > ) C and soliton solutions exist to (E32).

The Case When Horizontal Scales are of Order H '-"

In this case the appropriate scaling is

+ C-x + C + C- C X + 6 (E33)

and (E13) becomes

W [- T +1 'D - + C4 + C +.ed )

f +~ 1cx 4 c r + E?" T3 ~ 4.c + (DO4z3 E (j~V). (VOY (E 34)
L• 4

where

(+6~r~n)(E35)

Let

-O C7, 0 , ' -(E36)

then (E34) may be expanded in powers of :.

0(0 :' + ~ T)Cr+i - (31-+C w'

"(G) ' tD(DA) - +2[(.c.x)- ,cJ - (E38)

+ (+ )3 ( ,€o)2 +

+ C +). + + -) cO: ((E39)

tZ coC-c ) -3XJ~~ h * c 1C4) ~~+ C-D4 O)'J

~i(V. 00. V0 vO + 70ti-+ CA,)[ 04)14 + :-0)Q>J

,,

-- "L'° -a
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When r- is chosen to be the group velocity the first term on the RHS of (E38)
vanishes. In (E39) the terms containing resonances are

0.+ 2(a +c ))rpo +(o. + E0

It is only necessary to solve for a particular integral of (E38), since the
complementary function makes no contribution to the solvability condition.

At 0(l):

00 A(T)7' ()S114 T (E41)

where

vuf + 71ccoir t w1  + kx + t ,r (E42)

oA xz (W~s+ CO" + 14J3 1/4

At(~: Set [ COL*cM- i1!o 0(E43)

/12 c: (E44)

A particular integral of (E38) is

04 C &As'v%2't e- i kAL? ") + ILN 1.2 Lt QCos2i -

- ~ ~(E45)

The solvability condition at this order involves multiplying (E39) by-

and integrating from 0to 'rr/Q This yields two equations which come from

the coefficients of sint and cos-t

~-( 1  - ~ ZSZ A 0, A' 0 (E47)

(c-)(Arer +ASrx)+ 2SIATrO (E48)
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where -

I (t)2 J4L4 Q~f~ r~ Suu?lt - k(2 f(~s)

(4 .V -A t + 7 Lq +- cos15 +7 '1 : ] t42f
.e- 3 2 L- '

e~.-.

(0r -~ aY-' .) 5&f s k'2L 2) t~' (E49)s

S I

where it is positive and negative. If the following rescalings are made ""-

and B is defined as , ':
-A le (E5).

then
Is-,- + "x -IQ I's 1 1 0 (E52)

When 0C, (E52) admits soliton solutions.

* o.~.. L2  .-:,.q

APPENDIX F .'
In the appendix I e derive an amplitude equation for gravity waves of

long horizontal length in a weakly stratified isothermal layer bounded
by two rigid horizontal boundaries. The equations of motion are

Whn. d(i+ts) si (F2)soltins

, .. 5. .,.

'" ,5P,.-IX.F

• "..•.-__ .-. _ :.... .-.. ._._,.".In',' th-pp n i I de iv an ap i tude " equation -- for" " gravity r wave' s of ' ""
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+ (F3)-.-.. .t) op) ,,1&

where ' is the distribution of in hydrostatic equilibrium and p -P
are the fluctuations of pressure, dnsity and entropy. Equation (F2) can be

N rewritten as " "

since

The equilibrium pressure and density are distributed as

(F6)

where p and are constants. The equations of motion can be
adimensionalized using H in the natural way, yielding

e;-) M' (F7)

(F8)

W + 1t + Iv(1+ e-t : (F9)

W es + "V. 0 (FlO)

where

/ = (Fll)

Let

1-+ 14E e + C ,( Lk -3 e3 LW-. C-W
(F12)- - P - "P r "t°  ' v - , ( 't ),.:V

% 1

,L:.

r.::
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then (M7) - (MlO) become

(e'-+ e)(T.E?-T +e?.V) -u (F13) .=n

- We + ' (4+ 671 e? .V) + (e- - e 0. (F15)

with the boundary conditions

: i~ ~ 0 M=  0 T-r= /t (F17) - ":.

, Let

Lt. = Uc + GT , ,+ W O * E2 Wt (F18)

• ' :po* '-,- -' , # po* Gp .... '.-"

.: then at 0(M)

Il~e (F19)

0 -i]) p0-po (F20)

-WOE + . C) (F21) "

WO + V,* " 0 (F22)

and at 0( F 2): t-

It. +Y 1 (IT+ QA. V)L U61 (F23)5-L

(F24)

-w 2 E 4 -p,) -Ee'Iteo " e',(-po) + (F25)

+ .oV e- (p - p 0o" 0 O. -,

Wz + ItO + 0 (F26)

.... -' ."

7.7

* ". . . . .. . . . . .- .*..S*
*-** * ~ .*..., .. * -*.* -,.*"-.
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The amplitude equation is obtained from the solvability condition at 0( e2)
The 0(l) equations are satisfied by

where o - e'() a P e./

P! tAt + 2&coL k A Gr G(X (F28)

At this order G satisfies

(E 0 (F29)

* where

L! t+ '1/4 (F30)

At 0( E ) the equations (F23) -(F26) can be tidied up into an

equation for w,

E ( EC + CIDt+ 0)Wt. -MeP, & D DT L. It -A

+ - (F31)

Nov multiply by

*and integrate over space and time. If Gr, G , CXL. vanish as ~ -. o and
6-*oo the LHS of the integral of (F31) vanishes. The RHS yields the

following amplitude equation:

L! G. Gttt--- i + 2$r 0?(r,,)K .4 (1- Gwrx) E G1 * +

where

7 f/12 0 0( - e (F3i3)

(F33) can be tidied up by dividing through by Tr1 using (F29) to write

L! Cttt (t-A2)rt rtty E CrtKX F34



G=. Gxf (F35)

E .

and lifting two x derivatives:7

(G 2) +21 C7 XX G- 0f =0 UF36) .

*In thecase of stable stratification (E >0 ), let

(,AtL -T(F37)

* where (from (F29))

E/ (F38)

Rescale Gto remove the factor 9k

then S

2 Ge T (r +3 E cxc - jGrcxxx (F40)

* Let

and adjust the slow time scale by transforming to a moving frame such that

thn + 6 UUx 7E-x (F43)

which is the KdV equation.

7
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THE INFLUENCE OF WAVE-WAVE INTERACTIONS ON NEAR-INERTIAL WAVES

Motivation Eric Kunze

Wave-mean flow interaction theory predicts critical-layer trapping and
amplification on near-inertial waves in regions of negative vorticity
(Figure 1) which is consistent with the intense near-inertial wave packets ."

observed on the warm sides of fronts (Figure 2) (Kunze and Sanford, 1984).
Near-inertial energy is being continually pumped into these trapping regions

at the surface, Ff. Clearly, this energy cannot accumulate indefinitely;

there must be sinks. Three possible sinks are shown schematically in Figure 3:

i) Wave breaking and turbulent dissipation;

ii) Loss to the mean flow Ao( ;

iii) Loss to higher frequency internal waves (by wave-wave
interactions) which are free to propagate out of the trapping
region.

binWhich of these sinks dominates may have important consequences to mixing and
the maintenance of the internal wave spectrum.

Figure 3

The influence of wave-wave interactions will be focussed on here but a brief
discussion of the other sinks is appropriate.

As a near-inertial wave packet approaches its critical-depth, its

vertical wavelength shrinks consistent with the wave becoming more inertial,

and the wave amplitude increases, consistent with conservation of action-flux
and a diminishing group velocity. Both of these changes enhance the shear

and, therefore, the likelihood of internal wave breaking. Turbulent
dissipation values of 6 n10-4W/m 3 (1000 times larger than typical
pycnocline values) have been measured in the core of a warm-core ring in
layers 100 m thick at a depth and 600 m (Lueck, 1982) in the same depth range

that intense near-inertial shear has been observed in other rings. Can

dissipation account for all the trapped energy-flux? Taking a typical

measured near-inertial flux of 0.08 W/m 2 (D'Asaro and Perkins, 1984) and

assuming it is dissipated in a 100 m thick layer, one gets dissipation values

. . .7777
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,. N 8.10- 4 W/m 3 . Lueck's measurements account for only -2r0% o~f the
near-inertial flux. Though this estimate is crude, it suggests another sink
must predominate.

Less can be said about possible energy exchange with the mean flow.
Muller (1976) postulated a momentum exchange with internal waves acting as an
eddy viscosity. He found a negligible contribution from near-inertial waves.
However, he formally excluded critical-layers from his analysis. Measurements
have found vertical eddy viscosities much smaller than his estimates (Ruddick

* and Joyce, 1979', and horizontal viscosities much larger (Brown and Owens,
1982), bringing his formalism into question. The problem of energy exchange
between internal waves and the mean flow seems unresolved.

The influence of wave-wave interactions will be presented here. We
will be addressing the question: Is there a net loss of energy from a
near-inertial wave packet due to wave-wave interaction sufficient to prevent
the packet's shear from becoming instable as the packet approaches its.
critical-depth?

- Basic Equations

The loss of energy from a near-inertial internal wave (k0 , C.o0) to
. the rest of the continuum is, t9 the lowest order, due to a difference

reaction with two other waves (kl, -71), (k2 , 4D2), and can be most
easily expressed in terms of the wave action A= /E (McComas, 1975).

LA. f -( ,4- - , +P. M.,. - ],) -w-. w. S(r,._.), ,Jk C,)

where the Ai(ki) are the action-spectra and the interaction coefficient

,A +: P't cc, , cg

with (2eIIA 
V.

(2)

relating the horizontal displacements 2, ' and the pressure p to the
vertical displacement for internal waves. The integral of (1) will produce a
nonzero contribution to .l only if the resonance conditions are satisfied

itt

+ k (3)

p **'-f.-~,--+
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The Resonance Domain in the 4.2., Plane

Because the internal wave dispersion relation is horizontally-
Isotropic, we can assume 0g.k, k. ihu 08o eeaiy
Then the resonance conditions become

.0*

k, k , + +_ ... ::Each wave must also satisfy the Internal wave dispersion relation, Implying

k,+k

A(J)

where equations (4) have been substituted in for wave 2's variables in the
last relation. Equations (5) can be manipulated into an equation for

__' co 5e, (6______+C__%____-__+__6)

Resonance occurs provided RHSC L-l, 1I which for fixed 43, implies for
interval(s) in kz. The bounds for these interval(s) are sine 1 0, or
ky- 0. Setting Iky1 - 0 in (5) four curves can be found in the 40' ke-

plane that bounds the resonance domains:

* yk~OJ33IT"± i~T)(7)
These curves are shown in Figure 4a. They clearly bound the numerically
determined resonance domain (Figure 4b). There are two resonance branches. -

One of the branches asymptotes to -kz ,constant for high 49, so the
near-inertial wave does not exchange energy with waves of greater than twice

• its wavelength. This corresponds to the elastic scattering limit discussed by .-
McComas and Bretherton (1977). The other branch asymptotes to -kz 0  1
which increases linearly with 491 and corresponds to the induced diffusion
l i m i t . . ,.

". The Action Integral Y .

4' Integrating ov~r usng the delta-function (-k o) and

then converting 1.4k, , 0Ir J , yields

:f:4 + 4"k -



-203-

z o-) 0_ :
• - -o - .g....,.

-- Z o i.-

C.)I " I"* Z 0 c. 0

9 0
._ _, _ _o= 0 ,..4

0

LL.

4
o.0 0.. , I o ('.LI/.'. a-

ILJL p

f") N r ) 0' "

za

ww

-4 _-- -- W

__-_ _"_ 0 - _-

0 0 0 "o Z
-L) ____ WW :: ""

I .*U I ,.*,-I () " ,"

O0 0 0 00 ,. -

- ,0 W "0"-

-- z- - _ _ _U '_'4 ___ - ___ ._ __



-.- v. . ,S- <rW* ~ T 4T~wdW 5 ...

-204,-

where the action-spectra are now A( 49.,kz). The internal wave spectrum used
in the programs is the GM79 model (Munk, 1981) modified to exclude an inertial
peak and with a continuous rather than discrete kz-spectrum (i.e., no top or
bottom)

ov r f e~,) = horizontalisotropy, let (9

where b f 1300 m, Eo 63.10- 5 and kz* = 3 T b. Now, to integrate (8)forvero 09,,( taking ynadvantage of(6 the hnorizontal isotropy, let T= c, o 0= ' .i'i

for cos 1 aifig() Then

SM 7 )/r- -( tc,)(ke , +ke (10)

Therefore

where sin 91& f( 4.1, kzl) vanishing on curves (7). Next, integrate
over kzI for fixed &.l. The integrand is nonvanishing only within one and
the resonance domain branches (Figure 5). Over each of these branches, the
integrand of (11) will have integrable cusps at the edges

I I

A keR

Figure 5

because the denominator sinel vanishes in these limits. A coarse, discrete

numerical summation is not appropriate near these bounds which will have to be

treated differently, L.e integrated analytically over a small interval

dkzl. A suitable choice A kzl is

, . 5,,Jt(-Ir/I5) ( ,- .r~~~ -r)& (12)

The interior region of the domain can be integrated numerically.

The integrand will change sign as in Figure 5(b) if [A1A2 +

Ao(A 2 - A1) changes sign in the interval, as it does for all 4-91 in

"" the low-kz, "elastic-scattering" branch (Figure 6), i.e., the GM79-spectrum is

near equilibrium along this branch and there is little energy gained or lost

by the near-inertial wave.

m. * . . . ....... .. .
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Previous Results

Algebraic and numerical difficulties plagued this problem and were only
i resolved on the last day of the program. At the time of the oral presen-

tation, I had been unable to reproduce the results of McComas and Bretherton
. (1977) and Olbers (1976). Corrections were made to the program on the
• following day and showed close agreement. It will now be possible to go on

and examine the problem motivating this work. Some arguments for the
importance of wave-wave interactions at critical-layers is presented below.

For near-inertial waves, McComas and Bretherton (1977) found the
interaction time-scale diminished with increasing vertical wavenumber for the
GM75/76 spectra (solid curve, Figure 6). The time-scale became smaller than

* the wave period for vertical wavelengths less than 120 m. They found flux
out of waves for kzt- kz*, and an influx for higher wavenumbers. The
principal source of influx was parameteric subharmonic instability. They OF
proposed flux from low to high wavenumbers with a sink at high kz .

Observations of energetic near-inertial waves in regions of negative
vorticity have found enhanced energy only for X 2 100 m, roughly the same

h scales where interaction times become smaller than the wave period. However,
energy-flux is into not out of these waves, i.e. wave-wave interactions are a
source not a sink.

However, as energy is piled up in the low wavenumber near-inertial
wavepacket approaching its critical-layer, the direction energy-flux may
reverse. If we follow this hypothesis, assuming the interaction time scales
do not change, a crude estimate of the vertical wavelength at which the
interaction time ti (solid line, Figure 6) will be comparable to the
propagation time tp (dashed line, Figure 6) (i.e. the tie for a
near-inertial wave to propagate one wavelength, O:9Z

106..

sA iunr

(000 fr

Figure 6 O )

*. _. *O . . - :, - • - . . " ". *- *- -* . .* *- - . .

- "- T ) "" .
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The propagation time increases with kz because the group velocity .0

*" decreases strength with vertical wavenumber. The two curves intersect at
Na mr 120 m. For smaller wavelengths interaction will dominate and if the

flux is out of the wave any amplification should be drained away. W W

This wavelength can be compared to the wavelength at which the
Richardson Number will fall below 1/4. The energy-flux

F 'vo Pi o0.0g o. W/2 .

From this, the Richardson Number N2/kU 2 4 1/4 for >,! 60 m,
smaller than the scales at which wave-wave interactions dominate.

From this crude argument wave-wave interactions may be the dominant

sink for trapped near-inertial waves so that strong internal wave-breaking
need not occur at the critical depth. It remains to be shown that the
direction of energy exchange does change sign when more energy is put into the
near-inertial field and that the interaction timescales do not change

- significantly.
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. NUMERICAL EXPERIMENT ON SLUMPING GRAVITY CURRENT

Gretar Tryggvason

I. INTRODUCTION

Gravity currents are fairly common phenomena, and examples range from
.... avalances and atmospheric pollution at one end of the alphabet to volcanology

and zoology at the other" (Simpson, 1982). They occur generally when a fluid
* . of higher (lower) density advances along horizontal boundaries below(above)a
" fluid of lighter (higher) density. But examples also exist where the current

advances along boundaries between two fluids. It is usually referred to as
intrusion in such cases. The driving force of a gravity current is in all

" cases buoyancy, but the balancing force can be due to inertia, viscosity, or
surface tension. Here we will only consider gravity currents in the flow
regime where inertia and buoyancy comprise the main balance.

Gravity currents where viscosity has small effect are characterized by
a "head" at the leading edge. The head is deeper than the following flow, and

*. at the back there are usually unsteady waves and mixing. The foremost point
of a gravity current head is raised slightly above the ground as a result of
the current running over a thin layer of the ambient fluid (in order to
satisfy no slip boundary conditions). This thin layer is gravitationally
unstable, being below a heavier fluid, and flows up causing a complex three-
dimensional motion in the front part of the head. The elevation of the
foremost point decreases as viscous effects become less important, and when
the overrunning is completely suppressed (by holding the current stationary in
a uniform counterflow) it is found that the elevation reduces to zero (Simpson
and Britter, 1978). The complex three-dimensional motion also diminishes sub-
stantially. In the study presented here, the focus is on the initial motion
of a blob of inviscid fluid released into fluid of slightly different density.
However, since much of the analytical work has been on steady (or quasi-

I* steady) currents, we will review some aspect of those here.

The earliest treatment is due to von Karman (1940). He considered
current advancing under infinitely deep lighter fluid, and by applying the
Bernoulli equation along the separating streamline he deduced that the
velocity of the front is given by:

u -- (1)

where g' = g ( Fl ?2)/ ?2 and h is the depth of the current behind
the head. The densities of the current and the surrounding fluid are given
by ?i and 92 respectively. Von Karman (1940) also calculated the slope

of the interface, where it meets the ground to be 7T/3. Benjamin (1968), in
what is now a classical paper, reconsidered the steady inviscid model of a

* - gravity current. Considering a current of depth h in a channel of total depth
H, he showed that mass, momentum, and energy cannot be conserved for all
values of 4 = h/H. Actually only for 0 = 0.5 are all conservation
principles satisfied. He therefore concluded that there must be some head

L loss along the separating streamline and possibility of hydraulic jump behind
the head. Only values of 0 4 0.5 correspond to head losses, and values

.. greater than 0.5 require input of energy and can therefore not be obtained
experimentally. Benjamin (1968) pointed out that the reasoning leading to

- i : .. .. . - - ' . . . . .". ." 
°

. .. " ',.j
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von Kirman's result was inadequate, but obtained the same result using the

more refined theory. Benjamin concluded that his treatment more or less

exhausted the useful application of inviscid-fluid theory to steady gravity

currents. Later treatments have been of semi-empirical type, such as the one

of Simpson & Britter (1979) which tries to incorporate other effects, such as

the mixing at the back of the head. An exception is the analysis of Holyer &

Huppert (1980) which uses inviscid steady model, similar to Benjamin's, to

study the motion of gravity current (or intrusion) into a two layered fluid. .

They show that, in contrast to Benjamin's results, the depth of an energy-

conserving gravity current is not uniquely determined. They also study the

* effect of head losses.

In experimental work, gravity currents are usually generated by

removing a gate in a channel that separated fluids of different densities.
When the depth of the fluids is initially equal we have the case of mutual

intrusion. This was anlayzed by Yih (1947). He assumed that each fluid
formed a tongue of depth h - H/2, where H is the total channel depth. By a
simple energy argument he deduced that the velocity of each front would be

given by

U= __ 
(2)

Notice that this is identical to von Karman's and Benjamin's results if 2K"- )/ r

is replaced by 4-)/(y .} . The case where h - H/2 is the only one

where a steady, energy conserving, solution can be found according to

Benjamin's analysis.

The spread of a fixed quantity of fluid was considered by Fay (1968).

He uses an order of magnitude analysis to obtain spreading laws for axi-

symmetric current. Since he is primarily concerned with the spreading of oil

on sea he considers the flow regimes where buoyancy is balanced by viscosity

or surface tension, in addition to the initial buoyancy-inertia stage. Hoult

(1972) obtains the same relationship by solving the depth averaged shallow ,

water equations. As a boundary condition for the advancing nose he specifies

the Froude number, Fr = (u/g'h)l/2 , just behind the head to be \1/2

where X is a constant to be determined from experiments. For a steady state

current Benjamin obtained Fr - 21/2 when - . After adjusting

X(- 1.4) Hoult obtains (an algebraic error was corrected by Huppert and

Simpson; this is actually their corrected result) __

I = 1.6(g'q)i/3t2 /3  (3)

where I is the distance travelled, and q is the amount of fluid released.

Hoult's results are given in terms of a similarity solution and can therefore ,

only be expected to be valid after some time from the release (as Hoult points

out). Like Fay, Hoult also considers gravity currents when viscosity or

surface tension are important.

Keulegan (1957) performed a series of experiments where he released

fixed volumes of salty water into fresh water in channels. Similar experiments

were also performed later by Huppert and Simpson (1980). The gravity currents i

formed in these experiments all start out with essentially constant propaga-

tion velocity which in many cases persist until viscous forces become

important, thus showing little agreement with the above described power laws.
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This stage, which may or may not be followed by a buoyancy-inertia regime
described by Hoult's power law, has been called the slumping stage by Huppert K':
and Simpson (1980). They argue that the correct boundary condition is to let

the Froude number at the head depend upon the fractional depth of the current,
$- h/H. From steady state experiment (Simpson and Britter, 1979) they
determine Fr ( 0 ) as:

(4)

F = 1.9 0 < (5)

Notice that for small 0 , this is the same as Hoult's boundary condition:
Fr = 1.4 1/2 - 1.18. Huppert and Simpson assume further that the slumping
takes place through a series of equal-area rectangles, such that

lh - loho = q (6)

where I is the length of the rectangle, h the height and the subscript o
denotes the initial conditions. The Froud number can then be expressed as

Fr = ll/2i/(g'q)1/ 2 (7)

Equating (7) to (4) and integrating, they get (using the initial conditions
1 = 1 at t o)

71 +. (I /o/ (8)

=Lo (gI'qH //J It]Jf I 1,I /,1

where the slumping length 1s is the length of the gravity current when h/H
0.075. Equating (7) to (5) they obtain

3/2h3

~t ts,(11)

• . / =[ 1 / ~+ 1.9o f)"'o-, ,  I_ !)(0

, . where ts is evaluated by setting 1 1i in (8), and the initial conditions

*I ls at t = ts are used. 1* is the length when viscous effects become
important. The second of those spreading laws (Eqs. (10 and (11)) is
essentially Hoult's law. The first describes the slumping phase, and predicts
(almost) linear growth initially. Huppert and Simpson compare their theory
with Keulegan's (1957) experimental data as well as with data of their own,
and find satisfactory agreement when viscous effects are negligible. Although
the theory of Hupper and Simpson seems to provide a useful tool for, say,
engineering estimation, it does not provide much physical insight into how the
head controls the flow. The initial slumping phase and the formation of the
from steady state experiments can be applied. The assumption of a "box shape"

seems also hardly justifiable when compared to experimental observations. It
*" is not clear that steady or quasi-steady models as the one discussed above can

7.
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be expected to describe an inherently unsteady motion as slumping of a gravity

current definitely is. The need to incorporate some additional physics, as a t
Froude number behind the head, is perhaps only a repair, required because of

the damage done by neglecting unsteady effects.

In this paper we explore the above made conjecture by simulating

numerically the Initial motion of an iviscid blob released into a fluid of
slightly higher density.

II. NUMERICAL METHOD

Flows of the type considered here, that is where there is an internal , .

discontinuity of some sort, are generally rather difficult to simulate
numerically. Not only is it necessary to track the motion of the interface
accurately, but also it is often essential to resolve steep gradients in the
vicinity of the interface. For piecewise potential flow the situation is,

however, much simpler. Then the motion of the interface is determined by the
configuration of the interface itself, and there is no need to accurately
calculate the flow field in the interior. The motion of an inviscid fluid
with piecewise constant density, started from rest, is exactly of this type.
From Bjerknes' theorem it is found that there is a generation of vorticity
only at the interface. It can therefore be treated as a vortex sheet with
time dependent vortex sheet strength. The velocity of a vortex sheet is given
by the integral, due to Birkhoff (1954).

J()..~I 5 P ~ ()~~ 's (2.1)

Here P stands for the principal value. 0= (Ul - G2)'s is the vortex
sheet strength and al(&2) is the velocity in the lower (upper) fluid at

the interface. s is an archlength coordinate and I is a tangent vector. The
notation is shown in Figure 1. The Birkhoff equation (2.1) is a solution to
Poisson's equation

V'1/'V (2.2)

which describes the kinematics of a divergent free velocity field. Here /V/ is
the usual stream function and W is a vorticity field, which in this case is
a vortex sheet. Once the velocity of the interface is known its motion is
found by integrating '"

S~~,) (J5~t)(2.3)

In general the vortex sheet strength X(s) varies with time and its evolution
is governed by the dynamics of the system under consideration.

When simulating the motion of a vortex sheet it is usually replaced by

a row of point vortices, each with circulation

rz~As(2)
" where 4s is the distance between neighboring vortices. The integral (2.1)
*" is then replaced by summation and the velocity of each point vortex is found

..; ., . .. .'.. • .. ..- .- , - -. . -" . - " ,. . -, . ., .- . - - .- , - ... -
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by summing over the contributions from all other vortices. If the number of
vortices is N it is clear that finding the velocity of all vortices requires
0(N2 ) operations. For long interfaces, where large N is needed, this becomes

I very time consuming. When the (long) interface occupies relatively small
"" domain, or there are many interfaces, it is often more economical to solve

equation (2.2) and find the velocity field by differentiating the stream
function. For regular domains fast methods are available to solve Poisson's

equation, requiring O(M21ogM) operations, where N is the number of grid

spaces in one direction. Since the resolution is determined by M it is
- sufficient to have of the order one vortex per grid space, therefore N- M2 .
. This gives O(NlogN) operations needed to find the velocities. For large N

this is obviously considerably less than O(N2 ). Finding the velocities by a

grid based method and interpolating the velocities of the point vortices is
the main feature of the Vortex-In-Cell (VIC) algorithm of Christiansen (1973),

- which is used here. For general discussion of the VIC algorithm the reader is
referred to the original paper by Christiansen (1973). For application to an
interface problem see Meng and Thomson (1978), and Tryggvason and Aref
(1983). General discussions of vortex methods for flow simulations may be
found in Leonard (1980) and Aref (1983). A vortex method based on (2.1)
rather than (2.2) is discussed by Baker, Meiron and Orszag (1980) and (1982).

I-.

'a 

U45)

Figure 1. Vortex sheet, notation.

" An equation describing the evolution of the vortex sheet strength

- is obtained from the appropriate momentum equation. Here we consider two
layers of inviscid fluid with constant density in each layer. The difference

-- in density is assumed to be very small so it is justified to make the

Boussinesq approximation and write the momentum equations as

Her ?M ~'( + 0j) v +~ ij 1 1.2 (2.5)

Here z,= {, )/: .We also need to remember that the normal velocity is
continuous across the sheet, or:

( l - u2 )'n = 0 (2.6)

* The velocity of the vortex sheet is defined as usual by the mean of the

velocities of each side of the interface. It can be written as:

0 = (2.7)

p IIt
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Adding and subtracting E. Vii to the left hand side of (2.5) we obtain -

(after using (2.7))

y± -+ g V- , +? (2.8)

where the +(-) sign refers to i = 1(2), and

d i j ?U+ Ov (2.9)

* that is, the acceleration following the interface. We now take the dot

product of (2.8) with the tangent vector s and subtract the equation for the
top fluid from the one for the bottom fluid. Then we obtain -

"5 m(U(~t + " ( 1 +,)) = (V'()1 + P-P ) (2.10)

Rewriting this, and using (Zli - 2).s and 1 /20i 1 +5i2 ) we get

d AU -.- (,.p, (2.11)

where A is the Atwood ratio

A: -z (2.12)
F,, +f2

Integrating this equation over a small segment of the interface (between two
material points), and assuming that P1  P2 on the interface we obtain "

d - (2.13) -
dt

Here P is the total circulation around the segment, and A y is the
difference between the vertical coordinates of the end points. In the
numerical simulations the small segment is replaced by a point vortex whose
circulation is given by (2.13). The motion of the interface is now described
by (2.13), (2.3) and (2.1). In the simulations described here we have not
used (2.1) but the VIC algorithm which is based on (2.2).

At this point it is convenient to cast our equations in nondimensional
form. Assuming that L is some external length scale we write

X,%L 1AL tj P=AI(,) ,,/A, tP/, LJ: / i"f.J
where the tilda denotes dimensionless variables. Using this we can rewrite . .,

(2.13) as (dropping the tilda)

- Equations (2.2) and (2.3) remain unchanged. For the limit of weak strati-

. fication there is therefore no variable parameter in the equations, and it is

..............*.*-*-* : : ; -;:-- ,-:: -:: ::. ;, .-:-:::, .- -.*-...-s..---.*..- --. *-. .-, --.. ..-..-.-.- .-....--.*.! -.~
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sufficient to vary only the initial conditions. In the simulations we have V
taken L - 2H, where H is the depth of the channel. This choice is only for
technical conveniences so we can work with computational domain of height 0.5. f,

For interface with arbitrary density differences the evolution equation
has been derived by Baker, Meiron and Orszag (1980). They also showed that
it reduces to (2.11) in the limit of weak stratification. In our nondimen-
sional variables their equation is:

4P-- 5 =-2 (A "U-+ AI )+ m

When A -*0 this reduces to (2.11).

When following the motion of a vortex sheet with variable vortex sheet
strength, it is necessary to ensure that all parts of the sheet are
adequately represented by vortex points. In the simulations presented here
this has been achieved by redistributing the vortex points uniformly along the 6%

sheet after every time step. This redistributing process can have slight
smoothing effects, particularly it tends to cut off sharp corners. In order
to reduce this effect we have represented the interface by many more points
than formally needed if one simply wants to have the separation of points
comparable to a grid space. However, as the interface stretches the
separation of points increases, since we use a fixed number throughout the
simulations. Consequently, the effect of this smoothing will eventually become
important. In this simulation the effect is believed to be small. No
difficulties seemed to arise from the fact that the vortex sheet was much
better resolved than the velocity field. However, it has been observed inU simulations where the vortex sheet Is compressed locally that it can develop
'kinks' smaller than a grid space. This can lead to serious errors,
particularly if nonzero surface tension is included. We therefore believe
that a promising strategy for further development of the numerical method is
to keep the separation of point vortices constant and to insert and delete
points as needed during the simulations. Since the interface in the

U simulations presented here is constantly being stretched, the above mentioned
difficulties did not arise. For further discussion of the numerical method
employed the reader is referred to Tryggvason and Aref (1983).

Finally, we want to discuss shortly a problem arising in most point
vortex simulations. For straight vortex sheets with constant 4 it is found
analytically that the growth rate of a small disturbance is proportional to
maximum wave number is imposed. Therefore, if disturbances of all wave

numbers can be expected to be present, there will always be some length scales
that are not resolved by the simulations. For vortex sheets with arbitrary -
shape and vortex sheet strength there is no reason to believe that the
situation is in general any better. (Although it should be mentioned that P.
G. Saffmann has conjectured that sufficiently high stretching may have
stabilizing effects (Saffmann and Baker (1980)). A stable stratification
across the vortex sheet stabilizes long wave length disturbances, but
disturbances with sufficiently high wave numbers will still be unstable. For

... real physical systems there is of course always some mechanism that provides
stabilization for the highest wave numbers. In a fluid system of the sort
considered here this is accomplished by viscosity and/or surface tension.
Vortex method can only be applied when viscosity can be assumed neglibile, but
surface tension is easily incorporated in the formulation presented here. It

. .. . ., .. .• . .". " .
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is of course preferable when a physical mechanism can be included in the model
to be simulated, that provides a highest unstable wavenumber such that no
unresolved length scales are generated (as in Tryggvason and Aref, 1983).
However, for gravity current that can be considered essentially inviscid, it U
seems that surface tension effects must be rather small, if not nonexisting P
(for immiscible fluids), in most cases. We are therefore left with little
option except to live with the stabilization of smallest length scales by the %
numerics. The standard argument is that the small scale motion has little
effect on the large scale evolution of the system and overall accuracy is not
seriously affected by misrepresentation of smallest scales. We will confirm

this argument for our simulations by comparing runs of different resolution. .-. *,-

We also compare results with a simulation employing small surface tension to
show that the system is not sensitive to the exact treatment of the small
scale motion.

III. RESULTS AND DISCUSSIONS

In order to investigate the effect of various initial conditions, a

quarter of an ellipse was chosen and the size compared to the channel depth,
and the ratio of the major to the minor axis was varied. The initial * .

configuration is shown in Figure 2. For technical reasons four times bigger b
domain than the one shown in Figure 2 was simulated; the computed domain
containing a full ellipse resulting from reflecting the original quarter
through the x and y axis. The boundary conditions are that there is no flow
through the top and bottom boundaries and that the flow is periodic in the
horizontal direction (for the bigger box). In most of the runs the domain
shown in Figure 2 was simulated using 256 particles on a 32 by 128 grid. One
run employed a 16 by 64 grid. The runs performed are summarized in Table 1. -

* Figures 3 to 9 show the time evolution for runs 1 to 7. Run 8, which had
identical initial conditions as run 1 except that the total box length was

half that of run 1, showed no different evolution, indicating that end effects
are not important. Run I to 3 all used a quarter of a circle as initial
conditions. Runs 4 and 5 used an ellipse with the same height as the radius
in run 2, but different lengths. Runs 6 and 7 had the same initial conditions

as run 3. Run 6 employed only half the resolution of run 3, and in run 7 a
slight amount of surface tension was added to investigate the effect of
treating the smallest scales differently. *.

The most noticeable feature in all cases is that the blob, soon after

release, forms a very distinct head. The head contains a significant fraction
of the fluid and has a rather irregular upper surfsce. Behind the head there
is a layer of fluid that flattens out as the head moves outward. In the
initial stages of the slumping there appear instabilities on the forward part
of the interface. During the subsequent motion these waves grow and new ones %
are generated at the nose. This generation of new waves is very clearly
visible in Figure 3. The mechanism of this instability is generally believed
to be of Kelvin Helmholts type. In Figure 4 two waves merge in a way clearly
reminiscent of vortex merging. Such merging has also occurred in Figure 5,

though it is not as clearly visible from the pictures shown as in Figure 4.
When merging occurs, we note that first the sheet wraps around, but then seems

to be stretched out and appear fairly regular again. This seems also to

happen without being a consequence of merging. If a sharp spike forms, then

it sometimes seems to disappear after a while. It is not clear if this is a

real phenomena or some artifact of the numerics. When the points are %
redistributed, the interface is treated as a polygonline, and when the points

* e. . .. .. *'. .•.' x . . . ... • .....*. * * * . m . . * * * . . . . . . . . . .. .. . . ..
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lo. are put in new positions, sharp corners may be cut off. However, such a thin
filament seems usually to be rather inert and probably has rather little net
vorticity, so even if the numerics contribute to its annihilation, it is not
expected to have serious effects on the overall dynamics of the system. In
Figures 3 to 5 (and 8 and 9) the head has approximately the same shape in the
sense that the ratio of the height of the head to its length is similar. In
Figure 6 where the initial length of the blob was smaller, the head is also
smaller, but its height is approximately the same as in Figure 4. It is
difficult to define any head length for run 5 (Figure 7), but it is definitely
longer than in the other runs. The head height can be seen to be similar as
in runs 2 and 4. Another distinct feature seen in the simulations is that the
backmost part of the blob falls most rapidly. It is completely free of all

. disturbances and stays very horizontal during the slumping. By estimating the
" area below the levelled surface from the figures, it is found to be

approximately constant once it is formed. An immediate consequence is, of
course, that once the head is formed, it does not draw more fluid into it.

* Notice in particular that for runs 2, 4, and 5 the region under the horizontal
smooth surface is similarly long, indicating that the difference is primarily
in the length of the head. The merging of two (or three?) waves on the front
part of the head in run 5 gives, at first glance, the impression of a shorter
head, but closer observation indicates that this is not so.

U H

Figure 2. Initial conditions.

Run no. 1 2 3 4 5 6 7 8

a/H .5 .7 .9 .7 .7 .9 .9 .5

b/a I 1 1 .5 2.0 1 1 1

Remarks: No surface tension, except in run 6.
Resolution 32 by 128 gridpoints, except in run 7 where the

resolution is 16 by 64.
L/H 4, except in run 8 where L/H 2.

Table 1

iIi

"-. -.................. -. . .. . ..-. ..---..-. . ....-.... ..,.-.i-.-i- .. .-. -..+ ..- '.... , ." :,.. . .... -. ,
-- -. . . ,, - - . .. . . . .... . . , -.- .. . -, •. . ,,. '.. , '.°, " ,.," " " - ! , " . - . ' - '
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It is not clear from the simulations presented here, what the eventual
fate of large amplitude disturbances is. In Figure 3 (run 1) the first wave
to hit the back of the head seems to be stretched out, whereas the next one
shows no sign of similar process. In run 2 one wave seems to be undergoing
similar destruction by stretching, but others seem to form a filament or blob
that is swept back. That process is also seen in other runs. The shedding of
fluid blobs surrounded by parts of the vortex shedd would not be inconsistent
with experiments where there is observed to be a turbulent wake behind the
head.

The property of gravity currents, perhaps of most interest to inves- 'J,
tigators, is the propagation speed of the nose. In Figures 10 to 12 we have
plotted the position of the nose for the runs performed versus time.
Figure 10 shows the result for runs I and 8. There is no difference, -"

indicating that the length of the computational box has no effect on the
result. Figure 11 shows the propagation for runs 2, 4, and 5. There is

• essentially no difference between them, indicating that the height of the
initial blob is the important parameter for determining the propagation
speed. (We will discuss the relevant height scale shortly.) Figure 12 shows
results for runs 3, 6, and 7. It indicates that the exact treatment of the
small scales is not essential, at least not as far as the velocity of the nose
is concerned. It is obvious from the graphs that the velocity is constant
during the simulated period. The velocity is seen to increase slightly with
the height of the initial blob.

L'-

If we accept that the motion of the fluid after release is independent
of the exact initial shape of the blob, the proper description seems to be
specification of the quantity of fluid, q, and the elevation of its centroide,
hc. The motivation is, of course, that these quantities multiplied by the
gravity and the density difference, give the initial potential energy.
Assuming that the density difference of the fluids is small, using the
Boussinesq approximation reduces the number of dependent variables by one,
since gravity appears combined with the densities. We can therefore define a
reduced gravity g* as

2A (3.1)

In the literature a different definition is often used, namely

In the limit of vanishing density difference these expressions are obviously
the same, and knowing one, the other can be found. We prefer to use g* since
it occurs more naturally in our formulation of the problem. If the velocity V'.
of propagation of the nose, u, depends on the above-described parameters and
H, the total channel depth, then there exists a relationship such that

f(g*, q, hc, H, u, t) - 0 (3.3)

Notice that there are three length scales in this relation, hc , H, and .. ,-.

q . If the depth of the channel is very large, we assume that dependence on U
H will be negligible. From the simulations it appeared that volume was not an

,4;
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important parameter so far as the propagation velocity was concerned (runs 2,
4, and 5). Therefore, we select the dimensionless group such that the
following expression holds:

S(3.4).

From the simulations we have already noticed that the dependence on the first
and last group is very weak, if not nonexisting. Therefore, the appropriate
form to use is:

(3.5)

The linearized form of Ruppert's and Simpson's equation for the initial
propagation speed gives the velocity

A -(3.6)

The second form is obtained by using that q f hol o and 
2hc ho for a

: rectangle. Replacing g' by 2Ag (since they are similar for small A), we can
. write this as

U
'/5Ah I /(3.7)

A
which has the same form as obtained earlier, (3.5), except here we have f

*explicitly. The linearized form of Huppert's and Simpson's equations is
obviously the relevant one to compare our results with, since our velocity is
constant. (It is also easily checked that the difference from their exact
formula for our simulations is small.) Ruppert's and Simpson's formula has
been shown to fit experimental observation well, so comparison with it is also
a comparison with experiments. In Table II we have listed our calculated
velocity and the velocity calculated by (3.7) for the three different values

*' of hc/H that were simulated. It is seen to be in good agreement, except

perhaps for the lowest value of hc/H, where the fractional depth of the
current behind the head is smaller than 0.075, which is the lowest value where
(3.7) is valid. It should be pointed out that even in that case, do we
observe constant velocity, contrary to the prediction of Huppert and Simpson.
It has to be admitted that the three values of hc/H simulated, and the

.* narrow range considered does not allow very general conclusions to be drawn,
but it is not contrary to evidence to expect hc to be the most important
scaling length in the problem. The effect of finite depth is to reduce the
velocity scaled by hc. This is as one expects; sidewalls of finite distance
usually have a decreasing effect on propagation velocity. The increase in
velocity as scaled by the external length L is therefore due to larger amount
of initial potential energy and should increase faster with initial height, ifI C it were not for the effects of the finite channel depth.

In order to obtain some understanding of the energy balance of the
system, we made the following rough estimation: an ellipse was fitted to the
head in runs 1, 2, and 3. The height made it possible to estimate the loss in

I• .P-.
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potential energy compared with the initial state, and by knowing its area the ''
kinetic energy was estimated. The kinetic energy in the surrounding fluid was

found by assuming infinitely deep channel. From the energy balance a
propagation velocity was calculated. The results are shown in Table III. i
Considering the rough nature of the estimation the agreement is fair,
indicating that little energy can be associated with the billows on the back
of the head. The reason that the energy balance gives higher velocity than .

observed when hc/H is large is probably an indication that larger fraction
(than assumed in the estimation) of the kinetic energy is contained in the
surrounding fluid because of the top surface. c

hc/H simulated H & S theory difference

.212 1.167 1.331 12.3%

.298 1.142 1.188 3.7%

.382 1.052 1.094 3.8%

Table II. Velocity of the nose.

ui[

Run # R/L a/L a/b estimated by from
energy balance simulations

1.039 .234 2.5 .375 .380

2 .055 .328 2.3 .440 .440

3 .070 .469 2.3 .525 .460

Table III. Estimated energy balance. 5

IV. CONCLUSIONS

The results presented here show a fair support for the conjecture made
in the Introduction that the essential missing element in the modelling of
slumping inviscid gravity currents is unsteadiness rather than some arbitrary
Frode number conditions at the head. However, if the picture of the
energetics sketched in the last paragraph of the last section (that is, the -

kinetic energy of the billows is small compared with the kinetic energy of the
mean flow) is correct, then it is plausible that a steady-state solution is . . '
relevant after some time. It would probably consist of a blob of fixed
material propagating with uniform velocity, thus being rather different from -

the picture presented in Huppert's and Simpson's theory. The evolution
towards this blob is likely to be essentially unsteady. Note also that such a
blob would be highly unstable to shear instabilities.

The good agreement of our simulations with experimental results, where
the initial blob is essentially a rectangle, suggest that hc is indeed the
relevant lengthscale in the problem. However, a study of wider variety of
initial conditions is clearly useful and may be performed in future extensions .

of this work. The same comment applies to the range of hc/H studied. What

4 .
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happens when hc/H-40 is mostly unresolved, Huppert's and Simpson's theory
predicts a time-dependent velocity, but in our simulations no trend towards
nonconstant velocity was observerd in the run with smallest hc/H. Runs that
follow the evolution of the blob for longer time are probably difficult,
unless some small-scale smoothing is introduced. But even with such artifact

they might be illuminating. There is also more information that could be
extracted from the runs presented, but time did not allow us to do this. The . ..

most obvious ones are more exact energetics and plots of the velocity field
inside and outside the head. This information is difficult to obtain

experimentally but should be helpful for further understanding of this problem.
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A LINEAR STABILITY THEORY OF DOUBLE DIFFUSIVE HORIZONTAL INTRUSIONS

IN A TEMPERATURE-SALINITY FRONT

Hiroshi Niino

1. Introduction

It is one of the common features in the ocean that interleaving layers
are found where there is a strong contrast in temperature and salinity in the
horizontal direction. The possibility of a cooperative instability in which
salt-fingers drive medium-scale intrusions which, in turn, provide a necessary
amount of salt flux to maintain the salt fingers has been theoretically

*' suggested by Stern (1967). Recent observations in oceanic fronts have shown
that cold/fresh intrusions are sinking while warm/salt intrusions are rising
across isopycnals (Horne, 1978; Joyce, Zenk, and Toole, 1978: Gregg, 1979),
which is consistent with Stern's (1967) prediction.

The intrusions have been also studied in the laboratory. Thorpe, Hutt,
and Soulsby (1969) and Chen, Briggs, and Wirtz (1971) have made a laboratory
experiment on stably stratified salt water heated and cooled through side
boundaries. They have found alternating layers of cellular motions which
extend from one boundary to the other, and Chen et al. (1971) have suggested
that the vertical scale of these layers is scaled by go(4T/N2 , where gO(, T
is the effective buoyancy difference between the heated and cooled boundaries,
and N2 is the Brunt-Vaisglg frequency for the salt stratification. Recently
a laboratory experiment which seems to be more relevant to the case of the S.-.

oceanic front has been suggested by Turner (1978) and performed by Ruddick and
Turner (1979); (this paper will be referred to as RT). Here we will briefly
summarize the important features found in their experiment. They prepared two
fluids on the two sides of a barrier which is located at the middle of a
rectangular tank. One of the fluids is stably stratified with salt and the
other with sugar but with the same stratification. At a certain instant the
barrier was carefully withdrawn. Although the withdrawal of the barrier

, produced a considerable amount of internal gravity waves because of an initial
unbalance of the densities at both sides these waves decayed away within two
minutes after the barrier was withdrawn. Then, intrusions started to develop
with a typical time scale of a few minutes and penetrate into the other
fluid. The penetration velocity was nearly proportional to the depth (i.e., .. ,

density anomaly). The vertical scale of the intrusion was also proportional
to the depth. It is important to mention that these features of the
intrusions did not depend on the initial disturbances which were rather
arbitrarily produced by the withdrawal of the barrier. RT used an energy
argument to derive the possible vertical scale H and found that H should be
between (1 - ) S/N2 and 2(1 - )A/IN , with g the gravity
acceleration, P the salinity contraction coefficient, AS the local salt
concentration difference, N2 the Brunt-Vaisala frequency for the density,
and r the density flux ratio of salt to sugar (P.0.88, Griffiths and Ruddick,
1979). Since most of the experimental results for H fell into the above
interval, they concluded that the vertical scale of the intrusion is scaled

C.. by ~SN

Although the energy argument seems to work well in determining the
vertical scale of the intrusions, it assumes the presence of layered
intrusions from the beginning and does not require any knowledge of the
structure of the intrusion nor does it give any information on the structure.

p ;: "Zr 'k.-/ '- ' "''.;" ''" " "- ," '"-r""" :i" "" -2 i ' .""" ' *" ---,' "' -''."- -'" .:
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Thus, it is desirable to develop a theory which explains the vertical scale as

well as the behavior of the intrusions such as the growth rate, the flow
pattern, and the salinity and temperature fields, etc. The fact that the
development of the intrusions is not influenced by the initial disturbance

suggests that those intrusions may be generated as a result of an instability. %

Recently, Toole and Georgi (1981) developed a linear stability theory %

similar to Stern's (1967). They considered a stably stratified fluid which
has uniform compensating horizontal temperature and salinity gradients

extending to infinity. Although they tried to apply their results to RT's

experiment, the wavelength of the fastest growing mode did not agree with RT's "....
vertical scale. This result might be expected, since there is no typicalscale based on the salt concentration difference when the salinity gradient .. "
extends to infinity.

In this report, an effort is made to interpret the generation of the
intrusions in RT's experiment as a result of an instability of a salinity-
temperature front*. Although the initial disturbances caused by the
withdrawal of the barrier decays off within a few minutes (see Figure 2(b) in
RT), it is observed that the mixing caused by the initial disturbances has

already spread the initial salinity-temperature front to a finite width. At
the same time, small-scale motions which seem to be due to salt fingers can be
observed. In the following section the stability problem of this fluid is
formulated. In Section 3 the results are presented, and they are discussed in . .-.

Section 4. The concluding remarks are made in the last section.

2. Formulation of the Problem

2.1. Basic field

We consider a salinity-temperature front of a finite width which could * -

be regarded as the field immediately after the initial medium-scale

disturbances have died away. Although small-scale disturbances such as salt

fingers might be present, it is assumed that there is no medium-scale motion

in this basic field. Taking the x- and z- axes to the cross-frontal and

vertical directions respectively, we choose the following distributions of the

temperature T and the salt S as a crude model of the front (see Figure 1):

- (1)

= (2)

where -

1 1 for x>a
h(x) " x/a for IxI< a (3)

-l for x<-a

*Although sugar and salt were used in RT's experiment instead of salt and

temperature, the description will be hereafter made in terms of salt and

temperature to imply that the result of the present report can also apply to \ .

the oceanic front, provided that the effect of the earth's rotation were not
9t

Important.
J W
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-( and are the thermal expansion and salinity contraction coefficients
respectively, N2 the Brunt-Vaisala frequency, g the gravity acceleration,
2 4_P the equivalent density change of temperature and/or salinity across the
front, AO a reference density and a the half width of the front. Since the
density is given by P E l1 - O((T - TO) + ( (S - SO)) with reference 66

temperature and salinity, To and So, there is no horizontal gradient of
the density. The vertical stratification of the density is characterized by
the Brunt-Vaisgla frequency N There is no
stratification in the salinity field. RT performed three experiments which

* %.* %'

'41. - .

Figure 1

correspond to this configuration and found that the vertical scales of the
intrusions did not have a systematic dependence on the depth. Although it
would be desirable to consider the configuration for which most of RT's
experiments were made, we avoid the complexity which will be introduced by
considering the linear dependence of AY on Z. Once the behaviors of the
intrusions are found for the former configuration, however, it might be
possible to infer those for the latter configuration by substituting 'ay by

- its local value.

. 2.2. Governing equations

Consider a medium-scale disturbance of infinitesimal amplitude
• superimposed on the basic field. The evolution of the disturbance may be

described by the following equations:

2' (4)

0 =  2 + 9 (T_ ) (5)

(6)

) X-, (7)

dS

+21 U.- (8)

. .. .. . .. . . . ... .. ... .

IF-",,
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The behavior of 6 n can be graphically examined. In Figure 2 are plotted the -

left-hand side (LHS) of (32) (dashed line) and the right-hand side (RHS) of '

(32) (solid lines) against 6
.

* rV

7CC

Figure 2

*It is seen that 6'o exists for all values of in. The existence of 6"n
* depends on only mn, and the condition for the existence of 6 n is given by

in2 > 1.1?4.Now, LHS and RHS of (30) are plotted by the solid lines and-
the dashed line in Figure 3, respectively.

6a 62 6

Fiur 3
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where L4and Ware the velocities in the X- and 2- directions respectively,
the kinematic pressure, T the temperature, and S the salinity.

v The following assumptions and approximations are made to derive the
above equations: ,

1) Two dimensionality is assumed, since it can be expected that a
disturbance which has a y-dependence has a smaller growth rate.

2) The Bousinessq approximation.

3) The hydrostatic approximation is used, since the aspect ratio of
the intrusions found in RT's experiment is fairly small.

4) In order to express the effect of enhanced vertical mixing of the
temperature and the salinity due to salt fingers, Stern's (1967) para- -.
meterizations are used: i.e. the salt flux is assumed to be given by

where K is a constant eddy diffusivity, while the
temperature flux is assumed to be proportional to the salt flux with the
constant of proportionality (/10()L . The value of r has been determined
experimentally and is known to be - 0.56 for the temperature-salt problem -
(Turner, 1967) and 0.88 for the salt-sugar problem (Griffiths and Ruddick,

S1979).

" 5) In order to retain a possibility that the salt fingers transfer
some horizontal momentum, it is also assumed that there is an eddy momentum
flux given by -E K )U /7 . However, we have not excluded a possibility
that the momentum is transferred by molecular process. is assumed to be a
constant and may be called a Schmidt number. The parameterizations (4) and
(5) may be applicable to the salt finger interfaces but not to the diffusive "
interfaces. Since the medium-scale motion is driven by the salt-finger
process but not by the diffusive process, however, it is assumed that the
absence of the diffusive interfaces is not essential to the dynamics of the

*intrusions. The effect of the diffusive interfaces will be discussed in
Section 4.

, 2.3. Method of the solution

Consider a wave disturbance whose vertical wavenumber is m. Then, any
• " variable, sayz, may be expressed as

ReI t R ~e + (10)
where Re L J denotes the real part of the quantity in the bracket. 6'is
the eigenvalue to be determined and can be a complex number in general. In
this report, however, we will look for a real positive eigenvalue which seems

* relevant to the intrusion problem. Thus, 6' may be called the growth rate.

Substituting (10) into (4), (6), (7), and (8), we can express all the
variables in terms of :

.'--***~. *. -*v*
* . . * .* *
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where Vvis the stream function and ' M-d/4X. The hat, A has been dropped. -70?

Substitutions of (1l)-(14) into (5) give the second-order differential
equation for :

e _- _ +10) , .(15)

where A (16)

Now, we nondimensionalize (15) in the following way:

v =O.- .=cC'-,' a.d 67M= P-6"., (17)

where the asterisks denote non-dimensional quantities and

E (18)

Dropping the asterisks, we obtain

jb' ?ef 6- -_ ?Pei') (19)

2 6=
where Ra. = /N( 6/'1"0-, is a Rayleigh number and is the only external

parameter which describes the stability of the front when 0 = . It is
noticed that Eq. (19) does not depend on how u, w, p, T, and S are scaled.
Also note that the nondimensionalization introduced above is the only way to , ,-,

have only one external parameter in Eq. (19).

The solutions of (19) for x> 1 and x<-l are given by

= .- - - x1 > (20),.:.
feXo Xr (21)

and

where k x. R6'4 ih ,), 1( .L/V , and A and B are complex
constants. On the other hand, the solution for IxJ < 1 is given by

P=C6 (22)

. - .' ...-



- 235 -

provided that n and n2 are not equal*, where ?Vl . r..
1, ,2r- 1. / / _,. )12 ,and L = " / 6 t ' ) i'-'""

These solutions (20)-(22) must be matched at x = +1. The matching
conditions are that the pressure and the horizontal velocity be continuous,
i.e.

- continuous (23)
and V.

= continuous** (24)

Applying these conditions at x = +1, we obtain the following equation for the
eigenvalue 6:

) 29(

When L 2 - 4k 2 > 0, (29) can be written as

tan 30)

while when L 2
- 4k 2 < 0,

tanh FW -- L2 2 (31)

Since k and 4k 2 -L
2 are positive, there is no solution for

(31). It can also be shown that there is no eigenvalue when L2 = 4k2 (see
Appendix I). Thus, only the solutions for (30) need to be considered. In the

following section, the behaviors of the eigenvalues are examined.

3. Results

3.1. Analytical considerations on the behavior of the eigenvalue

Before presenting the results of the numerical calculation of the
eigenvalue, we will analytically consider some behavior of the eigenvalue
based on Eq. (30).

If we denote the value of 6, for which the argument of the tangent in

(30) becomes njr,/2Z (n = 0, 1, ... ), by 6 "n, the equation for Cn becomes

.-,M2, = 6- n 6 + e&, + (32)

*The case when L 2 = 4k2 (when nI and n2 degenerate) is treated in the

Appendix ".

*This condition can be also obtained by integrating (19) between 2= ±-"
and +1 +F,( e,< 1).

-,..•.. 
".* .

S J"
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The points where the two curves cross each other give the elgenvalue. Note

that 6 = 6 o is not the eigenvalue, since L2 - 4k2 vanishes when 6= Co.
From Figure 3 we can deduce the following important information.

1) There is no eigenvalue for m <7M/2 . This result coincides with t .

the result of the energy argument by RT that the height of the intrusion

cannot exceed 4d exactly*.

2) The number of eigenvalues depends on only r and is equal to O+/)

where < >is Gauss' notation to denote the largest integer among the ' p

integers which are smaller than 7IY./TC. - 1/2

3) The eigenvalue 6 of the fastest growing mode exists between

62 and 6'1 (or 0 and 6-i if 7U/2 < m< 7C). :-:.

4) The front is always unstable evn if the eddy diffusivity is

present; i.e. there Is no marginal stability curve.

Figure (3) makes it possible to derive the asymptotic behavior of the

eigenvalue for high wavenumbers. Let us assume "n', mN as m-oo with 0( a
constant to be determined. If N( is larger than 2, it can be shown that Eq.
(32) has no solution. If O is less than 2 on the other hand, Eq. (32) becomes

(a .

{ rI~~.IaopL fop

which in turn gives

( i.. + for 0
I 2g (33)

Thus, it is expected that when the eddy viscositv is absent, the growth rate

increases and approaches the asymptotic value -i as the wavenumber becomes .-.

large. If the eddy vf<;csitv is included, however, the growth rate

eventually becomes small for high wavenumbers.

3.2. Results of the numerical calculations

In this subsection, the results of the numerical calculations are

presented. The eigenvalue (growth rate) was calculated from Eq. (30) by using

Newton's iterative method for various combinations of Ra and . As the

initial guess of the iteration, the average of 61 and 62 which have been

also calculated from Eq. (32) by Newton's method, are used for obtaining the -

fastest growing mode.

*RT's d is equal to 2(1 - ) times our d.

• '~~~~~~~~~~~~~~~~~. .."..... ........... .-.... ,......'.,.. _ . . . . .,.,..,. - . . . .. . . . ..? '. .o .2 ' .". . . . .... ,
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Figure 4 shows the growth rate as a function of the vertical wavenumber

m for various values of Ra when the eddy viscosity is absent. It is seen that

the growth rate increases nearly in proportion to . For a fixed value of

Ra, the growth rate increases with the wavenumber and approaches the

asymptotic value predicted in the previous subsection. The most important

feature of this figure is, however, that about 80% of the asymptotic value is .. o.l

attained for m<l0. Since motions with high wavenumbers are expected to be

damped when there is some viscosity, this feature suggests that our choice of

the vertical scale was correct.

-' .i
Fiurwt 4rat fo A90

•~a I ,RU, I. .,

P =/0o,-'/-

i ~ ~Figure 54.'.
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In fact, if the effect of the eddy viscosity is considered, a maximum in the
growth rate is produced at a moderate value of mn. Such an example is shown in
Figure 5 for &E- 0.1 and for Ra =1, 10, and 102. It is seen that the6N

growth rate again increases with Ra. The wavenuinber of the fastest growing
mode also increases with Ra.

The streamlines, temperature, and salinity fields of the fastest
growing mode for &. = 2.0, Ba 1 04, and m =6.4 are shown in Figure 6 (a),
(b), and (c), respectively.

- 0.00- N

o 0 ,

r.J .

(10

o 0

0 0 0

100

.S0 N.

-2.1 -1.8 -1.5 ~~~~~-1.2 -0.9 -06 -. . . . . . . . . 2118 -. 12 -.0.6 -0. 0.0 0. 0.6 0.9 1'.2 1'.S 1.8 2.1
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The direction of the tilt of the intrusion is to cross the isotherms, as RT -. '

observed in their experiment. The cold/fresh water is sinking and the 6

warm/salty water is rising, which is characteristic of the intrusion driven by
salt fingers. Furthermore, the amount of tilt is about one wavelength across
the front. This is also similar to what Is observed in the above experiment
(see RT's Figure 3(a)). However, a qualitative difference is found for the
circulation pattern. The theory predicts an alternation of the clockwise and

counterclockwise circulations in the vertical direction, while only clockwise
circulations were found in the experiment. The difference is probably due to
the fact that the theory does not include diffusive interfaces.

The wavenumber of the fastest growing mode and the corresponding growth
rate are shown for various values of Ra and F in Figures 7 and 8, respec-
tively. Generally speaking, the wavenumber of the fastest growing mode
decreases as Ra is decreased and/or F is increased. However, there is an
asymptotic wavenumber which gives the smallest wavenumber of the fastest
growing mode for all combinations of Ra and F . The asymptotic wavenumber is
given by 2.88 and the corresponding growth rate is given by

0 . f-719 RaL (34)

92. (see Appendix II)

The growth rate of the fastest growing mode also decreases as Ra is decreased
and/or P is increased. For small values of 6, the growth rates calculated
from the asymptotic formula (34) are shown by dotted lines. It is seen that
the formula gives a good approximation to the eigenvalue for 6< 0..

R 4. Discussion of the Results

Although the results obtained above could also be applied to the
oceanic case as long as the earth's rotation is not important, we will confine
our discussion here to compare the results with those of RT's experiments.

*- In Table 1 are presented the parameters used in the three RT
" experiments in which the salt concentration anomaly ( PA across the front)

was constant with depth. Q/)Dl/@is the density stratification due to
"-" temperature and d the vertical scale defined by d,- I- )/2.

Ra WaVent&.be,. Of the f&StSt RqW~ F te

(CeoM Wet Of fta

/0

/0 A -- •

.*&2" 0/ ,a 0Sa .O- l - "

op/a fOP
for. 1 . E or IMAII Re ma/R

Ii -0.01 012 1.0 10-0 ->

Figure 7 Figure 8
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* *, . * ,;

Exp. 1 Exp. 2 Exp. 3 "-

S0.025 0.003 0.011 ,

1. 3x10- 3  1.2xlO - 3  0.67 x 10- 3

d 1.2 cm 0.15 cm 1.0 cm p.".

H 3.0 cm 0.30 cm 2.3 cm

2.5 2.0 2.3

m 2.5 3.1 2.7

8x10- 3 cm2/s 4xlO- 4 cm2/s 5x10- 3 cm2/s

Ra 3xlO 4  3x10 3  3xlO 4

d2/ )T 2xlO 2 sec 4xlO sec 2x10 2 sec

1 3xlO 2

Table 1

H is the height of the intrusion found in the experiments, the non- M .
dimensional height defined by -- H/d, and m the corresponding nondimensional
wavenumber. In order to compare the theoretical results with the experimental
ones, it is necessary to estimate the magnitudes of Ra and F in the
experiment. The Rayleigh number Ra has been defined by

(35)k,,? '-

- where we have two unknown quantities t, and a. The value of a may be
determined by the mixing due to initial disturbances. Figure 2(b) of RT shows ,
that the horizontal scale of the mixing region is about the same as the height
of the intrusions. Thus, we may assume that aA.,d.

To estimate the eddy diffusivity of salt due to salt fingers is a more
" difficult task. However, we start from the definition of the eddy diffusivity:

(36)

where Fs is the salt flux due to salt fingers and Sz is the vertical
gradient of salt concentration.

If we use Stern and Turner's (1969) experimental result to estimate
@Fs and an order of magnitude argument to estimate a typical vertical " .

salinity difference in the intrusions, Fs andeSz may be given by

Fs A( T(37)
,', '" ">o, : .'"
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and

H (38)

where A was estimated for salt/sugar fingers to be around 10-2 g cm
- 2

s I by Stern and Turner (1969). Recent accurate measurement by Griffiths ,
and Ruddick (1979) also suggest that A is around 10-2 for small values of
density anomaly ratio. Substituting (37) and (38) into r.', we obtain

- H ( -)1/3 x 10- 2 cm2/s (39)

The values of K calculated from (39) are shown in Table 1 together with the
Rayleigh number Ra and the diffusion time scale d2/t- which is used to scale k. :"

the time in the present theory. The values of h. could be smaller than those
presented in Table 1, since the vertical salinity difference should be less
than AS and also the coefficient A in (37) could be smaller than l0-2tc /s. @.W
These estimates of the eddy diffusivity suggest that the eddy diffusivity is
smaller than the molecular viscosity. The vertical momentum transfer process
due to salt fingers is one of the subjects which is still not well under-
stood. Here let us consider the ratio of the vertical momentum flux by salt
fingers to that by molecular process ( Zrktr/ P(14)/ ) ). If the
correlation coefficient between u' and w' is denoted by Cl(Cl<l), the
ratio may be written as C1 w'H/9 . If we multiply this expression by AS,

" we have-"_C .C'l -"'' -

i i 1 1
", V.

VMS N (40)

where C 2 is the correlation coefficient between w' and S'. Since salt
fingers are driven by a buoyancy excess due to salt, it is probable that the
correlation coefficient C2 for w' and S' is larger than C1 for w' and u'.

1 Thus, (40) suggests that the momentum flux due to salt fingers could be
smaller than that due to molecular processes. If the molecular viscosity is
used for the viscosity term, the values of IT in Table 1 suggest that the
Schmidt number 8 may be between 1-3 x 101.

Now we will compare the theoretical results with the experimental ones.
* Given the estimated values of Ra and 8 , we can obtain the wavenumber of the

fastest growing mode, which is compared with the observed one in Table 2.

Exp. 1 Exp. 2 Exp. 3

m (observed) 2.5 3.1 2.7

m (theory) 9.0 3.4 7.9 .

e-folding time xlO sec 5xlO see lxlO sec

Table 2
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U.

The predicted scales are found to be about three times smaller than those
observed except for Exp. 2 where a good agreement is seen. The interval of p

the wavenumber which is indicated by the arrows near the bottom of Figure 7
shows the observed wavenumbers in all of RT's experiments in which the salt
concentration anomaly increased with depth. If we assume that Ra is between A

V 103 and 105 and P is between 1 and 102, the wavenumber of the fastest
growing mode ranges between 3.0 and 12.0. Considering the rough assumptions .

made in the theory, the agreement seems to be satisfactory. Especially it is
noteworthy that the theory predicts the right scaling d for the height of the
intrusions. Two possible reasons for the discrepancy between the observed
wavenumber and the predicted wavenumber of the fastest growing mode may be
considered. First, since the intrusion in the experiment is a nonlinear
phenomenon, the wavelength could be different from what is obtained from the
linear stability theory. In fact, recent investigations on various
instabilities show that the wavenumber of the finite-amplitude waves are
different from that of the fastest growing mode by a factor of two or three .

(e.g. see Yoshizaki (1982) or Niino (1983)). Secondly, the assumption of the -
constant eddy diffusivity may not be appropriate. Because of this assumption,
the theory is unable to produce diffusive interfaces which were present in the
experiment. Since the flux through the diffusive interface is quite small
compared to that through the salt finger interface, this could result in a U
factor of two difference in the vertical scale. Furthermore, as Eq. (39)
might suggest, the eddy diffusivity could depend on the scale. Although it
may be difficult to consider the effect of the scale-dependence of the eddy
diffusivity in the linear stability theory, the effect could change the
wavenumber of the fastest growing mode.

The theoretical predictions of the growth rates corresponding to the
three RT experiments can be also obtained from Figure 8 and are shown in
Table 2. The e-folding time for Ex. 1 and 3 is about 10 sec which seems to be
somewhat shorter than what was observed in RT's experiment. The e-folding
time for Ex. 2 is about 50 sec and seems to be in good agreement with the
experiment. Again in spite of the crude model assumed in theory, the -
agreement seems to be satisfactory.

* 5. Summnary and Conclusions

A linear stability theory of double diffusive horizontal intrusions in
a temperature-salinity front is formulated and the results are compared with
Ruddick and Turner's (1979) experiment. In the theory, constant diffusivities
are assumed to express the heat and salt transports due to salt fingers, but
it is suggested that the momentum transport due to molecular viscosity may
dominate that due to the salt fingers.

The front is found to be always unstable even if the viscosity is
included. However, it is found that the disturbances which have a vertical
scale larger than 4d cannot grow. The vertical scale of the most unstable . -

wave is found to be of the order of d, which is the same scale as found in the
RT experiments (1979). The precise value of the wavelength of the fastest

growing mode is somewhat smaller than the observed one. This is attributed to
the effect of nonlinearity and the crudeness of the assumption of the constant
eddy diffusivities. The predictions of the growth rate and the flow.-.
characteristics of the intrusions are quite reasonable except that the model

is unable to produce the diffusive interfaces. Overall the agreement is

satisfactory regarding the crude model assumed in theory.

..........................
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The theoretical model employed here is essentially unchanged even if
the effects of the rotation and three-dimensionality, which seem to be -. .

important in the oceanic front, are included. In fact, some interesting
results have been found when these effects are included. The results for

these cases will be reported elsewhere.

Appendix I. The Eigenvalue Problem for La 
. 4k2

When L 2  4k2 , the solution for the gradient region must be changed

to

where +(.)K
7P&. vrb -(% +

Applying the matching conditions (23) and (24) to the solutions (20), (21),

and (I.1), we obtain the following algebraic equation

2k2 + k = 0 (1.2)

Since k is positive, there is no solution to satisfy this equation.

b Appendix II. Asymptotic Wavenumber of the Fastest Growing Mode for Large £
and/or Small Ra

If 6 is assumed to be proportional to or R- 0( as & become;

large or Ra becomes small (R becomes large), where 0( is a positive number,

Eq. (32) gives

ue s4,( 
1. )'

Thus, the growth rate 6 of the fastest growing mode is located between

(-Wr-,&)/R 2Vm" and(W-a/9)/#txE when m>7ror between 0 and(W -0/
pA2- when A<m<7C . If we introduce x by x =4R2

Eq. (30) can be written as

tan m - (11.2)

with 0 <°<(PV1lW f or Xr.I X < 7r, and (M" X)/7n <X c (M')/Mf
for kn'> • (11.2) can be solved numerically and the wavenumber of fastest

growing mode is found to be 2.88 while the corresponding value of x is equal

to 0.4719. This gives the asymptotic formula for the maximum growth rate 6"

0, tV 9 R&
(11.3)
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WEAKLY NONLINEAR FRONTAL WAVES ..

Nathan Paldor

I. Introduction

The linear stability of the two single layer geostrophic fronts shown
in Figure 1 has been recently studied by Griffiths, Killworth, and Stern
(1982) (hereafter GKS), Killworth and Stern (1983) (hereafter KS) and Paldor
(1983). The focus of the present study is the effect of weak nonlinearities
in the simple case when the potential vorticity is zero. We limit our
discussion to long waves since the short wave, nonlinear problem is too
complicated.

%A; Throughout this work the lower layer is considered infinitely deep so
that the velocities there are neglected. The assumption of zero potential P.
vorticity greatly simplifies the basic state as it results in a linear shear,
and this along with the assumed geostrophy implies that the interface depth is
quadratic. In the coupled front the quadratic interface depth intersects the
surface twice, while in the wall bounded front, a vertical coastline is
introduced in order to eliminate the second free streamline.

The question which we address here is: what is the effect of the

* nonlinearities in these two fronts? In particular, do they stabilize the
linearly unstable coupled front? Do they destabilize the stable wall bounded
front? The answers to these questions rest in the fully nonlinear equations
of motion and we explore here the longwave, weakly nonlinear asymptote of
these equations.

We first review, in Section II, the results of the linear theory, then,
in Section III we develop the weakly nonlinear equations, and in Section IV we
briefly discuss the solutions and describe how to relate them to laboratory
experiments. Since the two fronts are qualitatively dissimilar, each section
is divided into two parts, each dealing with another front.

yZr-L

(a) (b)

Fig. 1. !he two geostrophic fronts of zero potential vorticity; (a) the

coupled front, (b) the wall bounded front.

r ,- .



S°.

-246-4.. ,...

II. Review of Linear Theory

A. Wall bounded front

The front has been shown by Paldor (1983) to be stable for all
wavenumbers provided the velocity of the basic state is large enough. For

slow basic flow Paldor (1983) and KS have shown that the front is stable with
regard to longwave perturbations. The temporal evolution of the front is
given by exp(iwt) where the dispersion relation w(k) is given for long waves by

W4 k - -  
(2A.1)

where U is the velocity of free streamline velocity.

Equation (2A.1) suggests that in order to compute the slow, nonlinear
temporal evolution, one has to use a coordinate system which moves at a speed

C4= Z- (2A.2)

B. Coupled front IN

The coupled front can be viewed as a special case of the wall bounded -.

front, when the free streamline's velocity V is equal to 1/2 (although the
boundary condition is different this is not the profound difference). GKS

have shown that the linear theory predicts an exponential temporal growth
exp(wt) where

w v'. k2 + 0(k4 ) , k -* 0 (2B.1)

The different nature of the temporal evolution of the coupled front was *

suggested by Paldor (1983) to be the result of the resonant condition
C+ = C- -0 which is satisfied when L 1/2 in (2A.2).

The difference in the power law of the dispersion relation w(k)
suggests that the nonlinear effects of the coupled front cannot be derived as - -

a limiting case of the wall bounded front.

III. Weakly Nonlinear Waves

The nondimensionalization used for the two fronts is

x,y - L (the distance between the free streamline and
the wall or the distance between the two free
streamlines)•

u,v -fl, (f is the Coriolis parameter)

h - f2L 2 /g' (g' is the reduced gravity g' g )

t -/ -f

es'- .-

5 .5S*S* * **5 5 * . . . . . . . .v.' ..-" " "- '"5 ".'" = 5 " " .:' ' "' "' " " ' ""-" " 'S."" " -. ".. ."'" " ":".'".". .".""." ". . " ".."" . *. .
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The x,y momentum equations and the continuity equation for the shallow,
upper layer, are ' *

ut + uu x + VUy - v + hx  0 (3.1)

-. Vt + uvx + Vvy + u + hy -0 (3.2)

ht + (hu)x + (hv)y = 0 (3.3) A

The simplifying assumption of zero potential vorticity is written as:

1-u + VX = 0 (3.4)
y -

The basic state is assumed to consist of lj which are in steady state and in
geostrophic balance. Setting v = 0 in (3.2), (3.4) we get

u = y + (3.5)

= -y (j+ .) (3.6)
2

where CT is the free streamline (y = 0) velocity.

The depth of the interface at the boundary y -1 is h(-1) = V - 1/2
" -and in the special case V 1/2 it becomes h(-l) - 0 so that the coupled

front is encountered.

The phase speeds of the linear theory are derived from the relation
C )2Jdy = 0 so that for V>I/2 (2A.2) is the answer while for

V-1/2 the answer is Co = 0 . We focus our attention to longwave
perturbations with amplitudes not too large so that only the weakly nonlinear
effects can be realized.

A. Wall bounded front

Following the results of the linear theory we transform the x,t
coordinates in (3.1) to (3.4) into new coordinates , moving at the linear
phase speed (2A.2) which are given by

= (x - Cot)

-r= 
3t

where CO is either of the phase speeds Cain (2A.2) and E is the small
parameter which measures the relative smallness of D/O7and -/4(k,w in the
linear theory). In terms of I and r , Eqs. (3.1), (3.3), and (3.4) become

2 c+ (u-Co ) u + vv? + h = 0 (3A.1)

-3h - ECoh + (hu) + (hv)y 0 (3A.2)

t iUy+v, = 0 (3A.3) ""'"

where (3A.3) has been used in (3A.1) to replace vuy - v by vvm and the
resulting equation was divided through by.

, -. :.::&
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The boundary conditions associated with the system (3A.1) to (3A.3) are .
that there is no normal flow at the wall, i.e.

v(-l) = 0 (3A.4)

and an additional frontal (y = 0) boundary condition is derived now.

Let y = yf(y0,E) denote the position of the free streamline, i.e.
h(7 , yf (yt), ) =0 with yf(T, 0) = 0, then . - t.:O
implies rand applying the transformation to - and

we get

v(yf) f E3yfz+. (u-Co) yf (3A.5a) r

This, along with

h( (, " ), C) f 0 (3A.5b)

will determine the boundary condition at y f yf once the amplitudes of the £ ,

perturbations are chosen. The right choice of amplitudes can save the despair
of tedious and frustrating algebraic manipulations. Therefore, in antici-

pation of the resulting KdV equation

u + uu + u-? = 0

we let u -v A, 0/4 ro B, V ,1 C, so that in order for all three terms

to exist we require

AB v A2 C ,AC 3

The balance ABrJAC3 implies B i4C 3 in accordance with our choice of scaling

/t ' 3  and 04,, . The balance A 2C'' AC3 implies AeC 2 so

that we choose the amplitudes to be of order E2.

We therefore let

u f  + E 2 (uo + ul + (
2 u2 + ) (3A.6)

h + f 2 (ho + Eh 1 + f 2 h2 + ) (3A.7)

v v2  + Ev I + F 2v 2 + ) (3A.8)

yf = 7f + E2(y+ £yF+ ) (3A.9)

;.. where , h are given ty (3.5), (3.6) respectively and f = 0. The set of

expansions (3A.6) to (3A.9) is now substituted into (3A.1) to (3A.5) and the

coefficients of like power in E are set equal to zero. The result is a set

of equations which are manipulated to yield a single equation for uo . The y

derivatives which arise from the continuity equation are eliminated by inte- 5
grating the equation with respect to y. Thus, the resulting equation for

uo  involves only 'V and 'C derivatives and has the form of a classical

Korteweg-de Vries equation.

...... ... );._. .................................... =.......... -
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Appendix A contains the details of the algebraic manipulatioins leading

to the equation: ',,•

OI -O + ( 3 A . 1 0 ). .- ' -

where T C -0

r and (',. - - + (-q" (3A.11)

We note that when -* 1/2, Co- O0, and therefore -/2 so that

(3A.10) becomes singular with the trivial solution (when the boundary

* conditions are imposed) uo = const. Therefore, the coupled front cannot be
recovered as a limiting case of the wall bounded front and a different

derivation is called for.

We defer a discussion of the solution of (3A.10) to Section IV and

derive next the nonlinear equation for the coupled front.

B. Coupled front

The linear dispersion relation (2B.1) suggests the scaling

x

and when this is substituted into (3.1) to (3.3) and (3.4) the result is

fu + uuT + vv.- + h; = 0 (3B.1)

-2h+ (hu): . + (hv)y 0 (3B.2)

l-uy + Ev =0 (3B.3)

The boundary conditions are the two frontal conditions

h(, y (3,C), T) = 0 (3B.4a)

and 0

where yf is the displacement of the two free streamlines, initially at
SY = 0,-1. The latter condition can be written as

(3B.4b)

The choice of the amplitudes of the perturbations in this case is le"
" obvious, but if one formally sets the amplitudes of the perturbations propor-

. tional to E2, as for the wall bounded front, the result is precisely the

linear theory. Hence the amplitudes of the perturbations have to be bigger
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I..

than 0( £2) and a natural choice is 0(f). We thus let ,'
-.,.

u =  + F(u o + uI + 172 u2 + ) (3B.5)

h =  + f(h. + E hl + F 2h2 + ) (3B.6)

v= (Vo + Vl+E 2v2+ ) (3B.7)

Yf = Yf + (Yf + 'yf + ) (3B.8)

where h,u are given by (3.5), (3.6), and Vf = 0, -1. Equations (3B.5) to
(3B.8) are substituted in the set (3B.1) to (3B.4) and the coefficients of
like power in f are set equal to zero. The resulting set of equations is
reduced (see Appendix B) to the following single nonlinear equation for uo  :. .

The linear part of (3B.9) gives the linear instability

when ei(k- wr) is substituted for uo . This is in agreement with the
longwave instability found by GKS (note, however, that the width of the front
in GKS is 2Vr, while in the present nondimensional scheme the width is 1 so
that our lengths (wavenumbers) should be multiplied (divided) by 2V2 in order
to precisely match their result w =!i (2/YT') k2).

We turn now to a discussion of the properties of the solution of 5'
(3A.10), (3B.9).

IV. Characteristics of Nonlinear Waves

The equations which describe the temporal evolution of the nonlinear
waves in both fronts are discussed in great detail in text books such as
Whitham (1974). The description of the characteristics of the waves closely
follows Whitham's exposition of nonlinear waves.

A. Wall bounded front

The KdV equation (3A.10) which describes the temporal evolution of the -

nonlinear waves admits both solitons and cnoidal waves as solutions. The
solitons are compact perturbations which travel at a constant speed without
changing its form. In order to compute it we use the similarity transformation
Uo (I Z) = A. ('- Vr). The special case when 40 and its derivative %
tend to zero at infinity yields solitons. The propagation velocity of the -

soliton, V, and its amplitude, A, are related by

V BA
3

-.-
" . .. .... ... .- .-.. ..- ...- ..... ....-. . -. . .. ...... .. . - . .-"- - . .-

~~~~~.................•...................-..-..-..........- ...................... ...... '.-'- .--....]
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'II
where B is the coefficient of the nonlinear term uOu 0T' in (3A.10), i.e.

Va.(*i~Fi A (4A.1)

This equation relates the velocity of the soliton in the 1',r coordinates, to .-
its amplitude. In x,t coordinates the soliton has the additional linear phase
speed CO given by (2A.2) i.e. the velocity, C, in x,t space is given by

C = Co + V = CO + ( - 3 lj4,) ) A (4A.2)

The cnoidal waves are also similarity solutions but 4> and 4"are not
assumed to tend to zero at infinity. The mathematics is more cumbersome but
it can still be shown that the solutions can be expressed in standard form in
Jacobian elliptic functions and that the wavelength and phase speed are well
defined. The dispersion relation of these waves, involves, however, the
amplitude of the perturbations. For steady state free wave solutions we
set dL"-/dr=O in (3A.1O) and integrate once to get

U2 + F uo7,7, = A, (4A.3)

where F > 0 and A0is a constant of integration. Multiplying
(4A.3) by uo and integrating again we get

A u. -, AF - It W3 (4A.4)

steady solutions therefore exist for A,=0, AL> 0, if u2 4. 3A .

B. Coupled front

Equation (3B.9) is similar to the cubic diffusion equation. Thus we
can try a similarity transformation similar to that used for the KdV equation
in the preceding paragraph. Thus, we let

uo (7, rVr) S

and substitute it in (3B.9). The result is

V J2" 't,)"

Integrating this equation twice we get

Z ¢"- + JJ
v 2 k0oP (4B.1)

where KI, K2 are the two constants of integration. Requiring 4 to remain
finite at infinity we get KI 

= 0; and for solitary waves we will also
require K2 = 0. Multiplying (4B.1) by *(assuming 4' 0) and integrating
the resulting equation we get

i "-- -Ao K3(4B.2)

where K3 is a constant of integration which will be set to zero for solitary
waves.

............. ...,. . . . ,_,. _, . -. , _ _. .., _. .. . _,.. . .. -, _ ... , ,.A.. .. .,, .. , ... . .. , . , .. ., .;: :; ,.,:.. .-.,2.
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Equation (4B.2) can be written in the form

where A =-2K2 , B f-K 3

For the solitary waves we set A - B 0, and F(() will be positive in

this case provided p 2 -42V2. We therefore get a bound on the amplitude of
the solitary waves in terms of their velocity.

We next explore the possibility of having unbounded solutions. We note
that a legitimate solution of (3B.9) is

uo = a r 4 (4B.4)

* for some constants od and 9. This trivial solution (4B.4) corresponds to a
"" transverse rigid displacement of the whole front (upper layer) in which case

the basic downstream velocity 5 = 1/2 + y has to be modified at any point, y,
according to y-- y + .oLr where o is the velocity of translation. This
physically simple solution demonstrates the fact that (3B.9) does indeed have
unbounded solution. (The existence of this translatory solution might also be

!. the reason why (3B.9) is second order in time. First order systems do not
have this simple solution.) Note however that (4B.4) is not a solution to (3B.1).

Another class of interesting solutions is the steady solutions. These
are obtained by letting V = 0 in (4B.3). If we choose A = 0 and B>0 then we
get bounded oscillations in X where the amplitude of oscillation is bounded 14
by 0-(4B)1 /4 . -

The cnoidal waves, for which V f 0, can be shown to exist by setting
A 0 on the righthand side of (4B.3) and rewriting F(P ) as

F ()=B + V4 - (1/4) (p-2VJ)2 (4B.5)

and since the lefthand side of (4B.3) is positive for real 4 we get that
F(op) in (4B.5) has to be positive i.e.

2 < 2V 2 + 2 (B + V4 )1 /2  (4B.6)

The steady state solutions can be obtained from (3B.6) by letting
V f 0. Equation (4B.6) gives the amplitude, velocity relation of the cnoidal
waves for which A = 0, B>-V4.

Summary

The effects of nonlinearities on the wall bounded front and on the
coupled front were shown to fall into different categories. For the wall
bounded front the nonlinear equation (3A.10) is of the typical KdV form, its
solutions -3re solitons, or cnoidal waves or steady waves, but it can be shown
that there are no solutions which grow indefinitely with time (Bona and Smith, ,
1975) if the initial perturbation is bounded.

The more interesting case of the coupled front, admits the solitons,
cnoidal and steady waves like the wall bounded front but in addition there
exist solutions which grow with time.

i•i.

...........
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The amplitudes of all bounded solutions such as solitons, cnoidal and

steady waves are bounded by undetermined constants of integration. However,
since in addition there exist solutions to the problem which grow indefinitelyp with time, we conclude that the linearly unstable coupled front is unstable
even for weakly nonlinear waves. In contrast all nonlinear solutions of the.

(linearly stable) wall bounded front are stable.

The interesting problem which will be pursued in the future is how does
any given initial perturbation evolve into these solutions and in particular
how is the steady wave realized? When these questions are answered, the
solution can be related to waves observed in GKS.

Appendix A - Derivation of (3A.10)

Substitution of (3A.6) to (3A.8) into (3A.1) to (3A.3) yields the
following set
-;~~~U~ 

Z - o 
(A.1) 

"

(A.2) 4

a .01t =0 (A.3)

_2. V4 (A.4)

V)- o (A.5)

:::;~j 
+(- .

(A.6)i::;

From the y momentum equation we also get

u0 =-hoy (A.8)

When the displacement of the free streamline (3A.9) is substituted in (3A.5)
we also get

ho (yf) = G(yf) - yf (A.9)

Vl(Ff) ( C f)- (o)y (A.10)

Equation (A.1) implies that

ho = - (i- Co) uo + A* (y,.) (A.)-

where A* is arbitrary. Equations (A.8) and (A.3) along with liy = 1 imply
that A*(y,t) A(tr) so that

ho =-(Z - CO ) uo + A(r) (A.12)

•~~ 
° 

%C.
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A(Tr) can be shown to be zero by requiring that the total downstream
* averaged transport is constant with respect to v , in the moving coordinate,

i.e.

-4-,-K/b(u - C0 )dy>= 0

by integrating equation (A.5) we get vo 0. When Equation (A.1) is
substituted in equation (A.6) we get

(hvl)y C=2)o - (u

so that with the boundary condition v(-l) =0 we get

UAL Ci -(A.13)

where F(y) satisfies F(1I) -0 and F(0) Is finite on account of the definition
of C0 which guarantees the numerator in F is zero at y =0.

Equation (A.4) yields

U2 1 F(y')dy' -. o, + B(tC G3 . (y). u + B "C, ~)(A.14)

where B(Tr, ) is the constant of integration. From Equation (A.2) we then get

h2 - u0.-. - uouo~ ~ C0) (G (y) uo yyr+ B3-) (A.15) -

When Equations (A.12) (with A =0), (A.15), (A.14), and (A.13) are
substituted into Equation (A.7) and the latter is integrated between
y = -1 and -y =0, we get Equation (3A.10) where (0=0=v 1 -)=

* v3(-l) =7(h - J-C 0 ) 2 )dy have been used (so that the term with Br CL ,'~ .

drops oAi).

Appendix B - Derivation of (3B.9)

When Equations (3B.5) to (3B.8) are substituted into Equations (3B.1)
* to (3B.4) we get the following set of equations.

ho.=- u0 'T (B.1)

uor, + i u1 l + uo u0 -T + hl~ 0 (B.2)

uoy = 0 (B.3)

uly m V03. (B.4)

u2y 'Vl? (B.5)

(hvo)~ 0 (B.6)

h uo~ + ~ihoj + (hvl)y + (hov0)y =0 (7

- *~- . . * *r7**
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hov (,iB. 8)

A.)3.4V3)(AeJ)~4(h V. i(~aV. O (B.9)

V, (B.l10)

The y momentum equation also yields

uo w-hoy (B.12)

h2y - -(u'u 2)y h2 -u2 + C(Q3 , ) (B.13)

where C( ' , - ) is a constant of integration.

Equation (B.6) when integtrated once implies v. 0 and when this is
used in (B.7) along with (B.1) we get

CAQ d(B.14)

V"I:- -

When (B.14) is used in(B.5) we get

u2 . o7 + B (B.15)

where B is the constant of integration. This equation is used in (B.13) to get

h2 u. - Z 1  -B( 37 Z + C(&f, ") (B.16)

We now integrate equation (B.1) once with respect to 3 to get

ho = - uo + A(-) (B.17)

where (B.12) has been used to eliminate the y dependence of the constant of
integration A.

When (B.17) (B.14) are used in the y integral of (B.8) along with
va 0, we get

and requiring v2 to be finite at both streamlines (..I',ere h(y) = 0) we get
A =0, i.e.

We now differentiate (B.9) once with respect to ' and use the ". derivative of
(B.2) to replace hlrjand substitute (B.18), (B.17) (with A = 0), (B.16),
(B.15), (B.14). When the resulting equation is integrated between the two

2. * . .. ... ..>. . ..y..; ....'. . >.: ....... .. .................... .................. . ....-... .. -.....-............. .,... ...... ...... •.-.
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free streamlines and z- d-) -- dy are used we get

- 4oc: + a-' -o(4: + f v24 + (h. , i) -B.19)

Equations (B.14) and (B.17) (with A 0) can be used to show that

o , UC ( o. C (B.20)

whereas the boundary condition (B.10) and (B.11) can be Invoked to show that

I~l -- ffal~a  (B.21) f[l

Substituting (B.21) and (B.20) in (B.19) we get equation (3B.9).
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A MULTI-TIMING ANALYSIS OF THE HEAT-UP PROBLEM

RgrSamelsonW,?

I. Introduction Rg Seo

The mathematical analysis of heat-up, the process by which a contained
stratified fluid adjusts to a small change in thermal boundary conditions of
the side wall is very similar to that of spin-up, the process by which a
rotating fluid adjusts to a small change in rotation rate of the top and bottom
boundaries (see for example Veronis, 1967). For Prandtl number equal to one,
the heat-up of a rotating stratified fluid is mathematically analogous to the
spin-up. Three distinct time scales appear in spin-up, and multi-timing has
been used (St. Maurice and Veronis, 1975) to analyze the process. An
analogous treatment of the heat-up process for general Prandtl number is

" explored in this report. Finally, a few remarks on the relation of the steady
solution to boundary layer mixing in the ocean are made.

II. The Problem

Consider the flow of a rotating stratified fluid contained between two
infinite planes. The domain is -L!5 x- L, - < z<o, where the z-axis is
the rotation axis and antiparallel to gravity. The field equations are the

'""Boussinesq equations A, A ''i

(la-c)

and the initial and boundary conditions are

U =V W 0, 90 se (2a-b)

The density has been eliminated using a linear equation of state,

T. (3)

and the temperature has been decomposed into a basic state with linear
dependence on z only, and a perturbation,

S-.

::.~~ ~ + p=e 'V -t S_! ,,,t) (4) "

and the basic state has been subtracted from the initial and boundary
conditions. The rest of the notation is standard: = (u, v, w) is velocity,

.. p is the modified pressure including the centrifugal and hydrostatic
gravitational potentials, A is a constant reference density, f.l i'; the
rotation rate, g is the acceleration of gravity, P is a unit vector along the
z-axis, A i.s the coefficient of thenaal expansion, v is the kinematic
viscosity, K is the thermometric conductivity, 7 and A =V 2 are the
gradient and Lapaclan operators, and subscripts denote partial derivatives.

... .::-, ,- ..,. :. _.:..,.:, .:. ** . . ... : .. . ..- ....... ... -.........-,.. . .* ..... _
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The appropriate nondimensionalization is 0'.

I .-
(xI7 0Lx , y', z; , ;' 1

,) t " N-It'

(u, v, w) NL (u, vy, wI) (5a-e)Srr
P - AgacLWp'

where N2 - goSr/1 is the buoyancy frequency of the basic state. The
velocity scale is obtained from the linear balance (ignoring diffusion) in the
heat equation, and the pressure scale from the hydrostatic balance. Dropping

- primes, the nondimensional equations and auxiliary conditions are .,.-
.: ~~ ~~ 6. V, ,VU + -2 F 1, -Vp t 0 +- p : ..

t+ N~O +

div u 0 (6a-e)

U V V 0 t '0

U= V= - =0, 0 Cc V S, t -> 0

where -

19 F LI :V(7a-d)

F is an internal Froude number, " the Prandtl number, R the universe square P
root of the Rayleigh number, and C. the measure of nonlinearity. The latter
pair corresponds respectively to the Ekman and Rossby numbers in spin-up.

The problem to be considered is linear, namely < R, for
0 < R<< I. F and 0-1 /2 are assumed to satisfy Rl/2e< (F, 0i/

2)e R-1/2,

so that the only relevant ordering parameter for the system is RI / 2.

The z-dependence can be removed from the problem by the substitution

u(x,z,t) = (U(x,t) + U(x,t)) sin mz

v(xz,t) - (V(x,t) + V(x,t)) sin mz

p(x,z,t) - (P(x,t) + P(x,t)) sin mz (8a-e)

w(x,z,t) - (W(x,t) + W(x,t)) cos mz

o(x,z,t) - (Wx,t) +O(x,t)) cos mz

where the variables with tildes are boundary layer parts which are required to
vanish in the interior. Symmetry allows treatment of the problem cnly in the

- . .. * .... . . * . .i.. *
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region Ox 1, with boundary conditions

U = V = O, Wx = F "w Px = 0 on x 0 (9)

since U and V will be antisymmetric in x, and W, , and P symmetric.

In the spin-up problem, the system responds on three separate time
scales, given nondimensionally by t, El/2t, and Et (E is the Ekman number)
and corresponding respectively to internal wave motion, the interior spin-up
response, and diffusion (Greenspan and Howard, 1963; St. Maurice and Veronis, PIK,

' 1975). The analogy suggests multiscaling in time by t, Rl/2t, and Rt. Each
function is rewritten as a function of three times, and each time derivative
as the sum of three time derivatives:,ec,-) X-->,(X,'V, -r'T)...:

* where

= t, *V = Rl/2t, T = Rt (11) -

and we will drop the prime immediately. All dependent variables are then
expanded in powers of R

I/ 2:

'" ,(x,t,-r ,T) /(x,t, -: ,T) + R1 /2 (x, t, -r,T) + R0(x,t, ,T) +.. (12)

Equating terms of equal order in R1/ 2 gives the following, where the
i boundary layer variable J = R-i/ 2(x-l) has been introduced to make the

highest order derivative an order one quantity in the boundary layer equations:

Interior

1/ q ""-

p0 ft V41-Zr t 2Ft'v

.~U I # - - & 6-_-. -) W---

#._,,Boundary layer C

Y. -f 01-2 f4.FU

l.. ,/ W, /r " (14a-e)K- -I - -- 4 -- 2)""

4..

V.-,14.- ,

*~.-.-.,

. - .- . . . , - . % .. . ' . . - . ' .. ° .. - % " . .% -. . ' . .- . . . " . . . . .' - . .% .. . . . . " . " " ; . . - . - . . V -
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The auxilary conditions are ':

0, t -o

(15a-d)

where

X = 0), ' /(x 1).

III. Analysis

Order zero interior system

1 ZF4o - . - (16a-e)

One equation for Uo can be derived,

L1 Uox x - m 2 L2 Uo  0 (17)

where

L= +1, L2 - + LIF (18)

The zero order boundary layer equations give U0  0 0, so homogeneous initial

and boundary conditions apply to (17), and since all free oscillations decay
in a dissipative system, the natural solution is the trivial solution. Then

Uo  Wo  0

mPo, V = P (18a-e)

O cO(x ' ,T), Vo Vo(x,t ,T) "

so the system is hydrostatic and geostrophic and the thermal wind relation -

holds.

Order zero boundary layer system

(19a-e) ,

* . * .* . * . . .A. . . " . ," "" Il ., ." .. ,'. -
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Clearly (19a) implies U0 = Po =0. (19b) is just an ordinary heat .- l
equation and has a simple solution by Laplace transform.

eo(Y (20)

22
where

2 PK F (21)POT

- has been defined for convenience. (19c,d) are difficult to solve for
general T. For G"= I they are analogous to the transient Ekman layer
equations, and a solution by Laplace transform gives

- -(22)

An integral of the continuity equation gives

,. (,.tA) (23)

and

", t')1 "5" S(t ) (24)

where S(x) is the Fresnel integral defined by

) (25).

Further discussion of the equations for general (" is relegated to the
Appendix. Since the boundary conditions are independent of t and the behavior
of the 0 = 1 solution is known, the steady solution is assumed to be the
limit of the transient solution as t -> co , yielding

(26a-c)

and the boundary condition
A4,

.- U,( ) t, (27)

all of which agree with the solution for .= .

. Order one interior equations
't-zFV, ,IY,, -,- ,,,?'

, -ZFY -W t Z FI/,

(28a-e)

F.:4"
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Forming one equation for P1 gives

LiPlxxt - m2L2Plt = ml(A UP.t oxx ) (29)

Since &ot - 0, integrating once over t would give secular terms if the
righthand side did not vanish. In order that the solution remain uniformly ,

valid as 12-a, a nonsecularity condition that the right side vanish must be
imposed, yielding

®oxx - A 2(o - G(x,T). G(x,0) = 0 (30) a. I.

Applying the boundary conditions,

COIL% + g(x,T), A(0,0) g(x,O) = 0 (31)

An equation for A can be obtained from the limit as t--oo of (28a) evaluated
at x I 1 (Vlt-30 as t- oc by a nonsecularity condition) and (27), which gives

d "K,. -rj (32) :::

A , - dL A = - (33)

and

PCT)(I - e - T) C-j , T) (34)

where

A Laplace transform of the system (28a-e), some algebra and solution of p
the boundary value problem yields

A F ~-

For the case F f 1/2 the Laplace inversion reduces to inversion of the
boundary value; for general F the limit of the tranform as p-* 0 suggests

5v (37) .. -

which agrees with the limit for F 1/2.

Order one boundary layer system

,V tor ¢
(38a-d)

..-
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The steady system (fvt 0) can be solved quickly; this will be used as the
limit t-4-. The solution is *

CC3f /fo 6

"i and a boundary condition for U2 is" / '.

., where - .,

% = -(41)
The case 0"= 1is analogous to the forced Ekman layer equations in St. Maurice ']

(_2 rl
and Veronis (1975) giving

A Laplace transform lea s to t frd a

dwhich can be solved using (22), (23), and (28a) and yields

W, - ; I (44)

' -1 A a < p0 [ - -e:."-

*To obtain a boundary condition for U2 , which is all we need, we integrate .- ['
Sthe transformed continuity equation

AA

_.] ,(45)

from - to zero to get ,...
/4 -- /21,5 Jd, -)'PL,, - (C ) ' -)

W, P

L- ;I,, Tv .e
To obai a< boudar condtio fo U2 hich i -s al e"edw itgrt
the trnfre cotiuiyeqato

'~ A , 
"

(45

/%"

..... ... ... . "-"-'" . .. "" <"<-:-" -' <; ": < <-'€'r" ' -vi"'- "-", "- "'"."."." -" ' "," "" -"."k"n" M"-
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A

The boundary value can be determined from (28d,e), (34), .,nd (30). From
(28d,e), 

,.

AA

A (47)

so for the case F 1/2

4- "i - L-'

(r + t.z p)) DJ (48) v

+ L L2~~4DL~f1

This can be inverted as

* iejq, F'(oscillatory terms) (49)

SThus the solution for will not remain uniformly valid in time as ti -Po

and will not approach the steady solution (0) unless 15% vanishes at large . -

times. (The steady solution leads to Vo - P1  0 0, so the forcing term -

I in (42) and the part of (49) proportional to dot' do not appear.)
Applying the condition c5x " 0 at small times, however, leads to an
overdetermined problem for o" We require

00 -0 T * 0 (50)

where T > 0 indicates the condition cannot be applied to the short time
problem.

Order two interior system

U7t IF VI -

t4z S A...

"~~i-. '"i
* ,H ..:
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This leads to C.

L Lgjrx ki z Pz L,fW+dLy: P,, + L,) P,4

(M + f- IL4 + (52)
fVa-

Imposing a nansecularity condition as t -owith U1 given by (37) and

Sby (34),

£ '' F~eea-)~ ~ N 70 f~(..e--Ar) T~~(i~

4- Y)(Kx. ~t ~ (53)

where

A (54)

Imposing a nonsecularity condition as t' gives the two equations

1XXT~
2 X -C f :flS (55)

C(~ -o (56)

The second of these has solution

CO..L )XSCA (57)

Nonsecularity conditions require

*so evaluating (51b) at x I gives

X ' (59).' Ii
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- and equating this with the previous result from the analysis of the order one
boundary layer,

,+ - _ (60)

One differentiation with respect to *Zr and the substitution of (5P) for WZ
as t->o results in j-,

where

7 + (62)

Since the forcing term is a solution of the differential operator, it
will generate secular terms if it does not vanish. These terms will behave
like -r e--r and thus in fact vanish as , but the formal procedure of
applying nonsecularity conditions to avoid a power series behavior with
increasing order is still legitimate. This leads to an equation for f, U .

fT + (5f O (63)

with the initial condition from (35), this has solution

f(T) = e-lT (64)

The solution for g(x,T) can be written as the sum of a particular solution to
(55) and the solution to the homogeneous equation, that is, as -.

g(x,T) gp(x,T) + h(x,T) (65)

where

" "(66)

is easily shown to be a particular solution. Thus h must satisfy

h(x,O) - .
.. "s L, (67a,b)

h(l,T) 1

A further boundary condition on h is needed and comes from condition (50):

hx(l,T) = 0 T>0 (68)

.. ... .. ... .. .. ... .. ... ..-
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K- Then h can be written as a steady part satisfying the time independent
boundary conditions and a transient part.

h(x,T) = hs(x) + hu(x,T) (69)

where

S~ C4 fSL M o" a ' >.x (70)

to,
- - (

;. / bT3 - . I,) = 0(72a,b) .,-
C) T)

The equation for hu can be solved by separation of variables. Substitution

of the form

" - and subsequent evaluation of initial conditions leads to the full solution for
'. the lowest order temperature field.

. , ' ~ ~-,A( ..::

•~~ 4--.

A,'e4-

.* , , , ;: ::

*f U A:

P ,'-a 
.-

4
tj

f 4

,,0-"
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IV. Discussion

Three distinct time scales occur in the heat-up process. The buoyancy
layers set up on the time scale given by the inverse of the buoyancy fre-

*quency, nondimensionally order 1. The horizontal velocity arising from the
divergence of the boundary layer transport is order R1/2; since it must

*traverse an order I distance to affect the interior, the interior responds on
* a time scale of order R-1 /2. Finally, diffusion occurs on a time scale of

order R-1 . (These correspond to the spin-up time scales 1, E-I/2,
E-1.) Examination of the steady state solution hs in (73) indicates that
penetration into the interior of effects due to the boundary forcing will be
limited by vertical diffusion roughly to a scale of the order of the layer of
m-1 and 1/2 i/2F-lm-l. For small m, penetration will occur
throughout the interior. -

We can put some numbers into the steady solution to get a crude
estimate of the penetration of boundary mixed layers in the ocean. Assume a
ratio of horizontal to vertical eddy diffusivities 7, where

, =107  ,-

then 2 in the diffusion operator replaced by- and the decay scales 6

7 /Fbecomel ml. For ordering to be consistent, we require

R1/2 4< !!I'< R-/

With

'H = 07= I07 cm2 S "

N= i0- 3 -l
L - 103 km =108 cm
af 10 -  s-'

we obtain .

= 10-6 o-

F - 10-1

and a boundary layer scale LRI/2 = 1 km. The boundary mixing scale
determines :

50m 1 km
5x10-5  10-3

m 21166 ; 105 5x103

S =71/2_. 3x10 2  .6
-7 .-6+'N

S.. N-

The suggestion is that vertical diffusion may inhibit penetration of the

effects of boundary mixing into the oceanic interior. Note that the
assumption of 50 m for I (as suggested by Armi, 1979) violates the
requirement for consistent ordering.

2 ki 22

S.:,
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Appendix - The Transient Buoyancy Layer Equations

Writing w - W0 , e S 1- UP0 the order zero boundary e.

C-?layer problem for the vertical velocity w and temperature 6 is

'+ ' - 0-/2w~=
w a i0, t !i0
W, -0* 0 as f -P -
w 0,ei 0, 0=, t>O0

Solution of the boundary value problem for the Laplace transform functions is
straightforward, giving

A - -4T~ (?I 1 1 2 (q-Pa~

A1

where

a, sp + (i2p2 -1)1/2 , Re a1> 0
-2 1)1/2 , Ra2 O

s =(/)cl~ + rl
1 =1/2)1,71l/2 a--112I

The complex square roots must be dealt with carefully in the inversion of
* these transf orms.

Def ine r(p) i Pp 2 
- 11/2 eL 2 as analytic except on

* . the cut fD. ',3 as shown:

Define ~r ~ ~ ~ , :rJ(p~

with branch cuts along the negative real axis in the sp + r and sp - r planes
* ~.respectively. The corresponding cuts in the p plane, including the cut for

r(p), are It L.

9d
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The cut for a2(P) includes the half-ellipse

P coato + tsin , - 2

The contour C of the Bromwich inversion integral may be deformed to C' as .

shown:

"+ ,-*-'

Then ''"

I -J--e-

C _______ o~" . -,
- 2 ____

Isp-r' .~ s I LI- lg-1,c )2- ... *"

Sp - r

I have not carried out this integration.
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SOME EXPERIMENTS ON ROTATING BAROCLINIC VORTICES '

Andrey Zatsepin

I. Introduction '

Recently the work of Griffiths and Linden (1981) was published with the .

results of laboratory experiments on the stability of vortices in a rotating
stratified fluid. Initially they produced axisymmetric flows with a two-layer r
density stratification by releasing either a constant flux of fluid from a .*

point source or a constant volume of fluid into a rotating environment with a
different density. In all experimental runs the axisymmetric baroclinic
vortex appeared to be unstable, and there was a transition to nonaxisymmetric

* flow. Griffiths and Linden described this transition by two parameters: E ,
the square of the ratio of the internal R ssby radius of deformation to the
horizontal length scale of the flow, and Y, the fraction of the total fluid C

depth occupied by the surrounding density front.

Griffiths and Linden showed that their experimental results on the
stability of baroclinic vortices are in good qualitative agreement with the -.

results of inviscid stability analysis done by Phillips (1954). They
discovered that according o Phillips' model, the instability occurs when the
parameter (--'/d la reaches the critical value, which is
approximately 0.01 - 0.04 in the case of constant flux experiments when

0.2. On the other hand they pointed out that the viscous friction plays

an important role in the instability processes. Although they did not change
the viscosity in the experiment, they were able to show that the value of i
at which instability occurs is decreasing with decreasing of the non-
dimensional term which is the ratio of the time scale required for Ekman
pumping to spin up the vortex and the time scale required for inviscid radial
advection of the fluid in the vortex during the constant flux regime. So, one
can assume that the increasing of viscous effects should lead to the
occurrence of instability at larger values of Y . As the parameter ' is
decreasing with time during the experiment, it seems that the instability will
occur as soon as viscous effects become relatively important.

However, it is not yet clear how the frictional effects influence the
onset and the development of instability. Especially, there is no information -'

as to what role the frictional effects play on the solid boundaries of the L
tank and particularly at the bottom.

In the experiments which I am going to describe here I am trying to
find the answer to the following questions:

1) How does the bottom friction influence the instability process of -

the anticyclonical vortex which is created in the case of constant flow-rate
of less dense fluid from a small source on the top of a rotating, more dense "-
fluid?

2) What happens to this vortex when the supply is suddenly finished 6f

before the vortex reaches the unstable state? How does the bottom friction 5
influence the spinning up process of this vortex and the onset and development
of instability?

P A .
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I.. Description of the Experiment

The scheme of the experiment is shown in Figure 1. The plexiglass tank
(1) (50 x 48 x 30 cm3 ) was situated in the central part of the rotative

" platform (2). Before each experimental run, the tank was filled with salt
water solution and put on solid body rotation. Then, fresh water, colored
with dye, from a container (4) was added continuously from the small source
(3) - a 1.0 cm diameter vertically mounted tube at the top of the fluid
layer. The tube was situated just in the center of the tank and rotative
platform, so the incoming fluid had approximately zero angular momentum. The
flow rate Q was monitored by a flow meter (7) and held nearly constant by a
constant lever device (5, 6).

The process of the formation of anticyclonic vortex (dome), its growth
and instability, was photographed from the side by a Nicon motor camera (8).
In order to have both sides and plane views of the dome, a mirror (9) was
mounted on the top of the tank at a 450 angle to the horizontal. The
measurements of the height of the dome were obtained from the side view and
the diameter (radius) from the plane view.

In order to investigate the role of bottom friction we provided eight
experimental runs with a smooth bottom and the same amount of experimental
runs with a rough bottom. All-over experimental parameters such as flow rate

Q, edce grviy ' (~hW ,weefis the difference in density between
layers, Coriolis parametex'# " 21, wheee.fl- is the rotation frequency,
viscosity 'P of the fluid, the initial height of the fluid layer in the tank
Hog was nearly constant through the whole series of experimental runs. The
values of these parameters are given in Table 1.

Ho = 26.0- 27.0 cm

Q = (1.30 + 0.15) cm
3/s

(0.30 + 0.05) cm/s
2

f(1.00 + 0.02) s- I
10-2 crm2/s

do  (0.5 + 0.3) cm
h o  = (1.0 0.3) cm

Table 1. The values of experimental parameters.

Half of the experimental runs with smooth and rough bottom were made in
the condition of continuous flow supply. In other runs the flow supply was
stopped when the vortices were still in stable state.

The roughness on the bottom was produced by using a layer of small
stones. The height of the "rocky" layer ho was about 1.0 cm and the average
size of the stones doj! 0.5 cm (see Table 1).

It is clear that the rocky layer will increase the frictional effects

near the bottom and will change the time of spin up. Assuming that the rocky
bottom is in some way similar to the porous bed, one can estimate the new time
of spin up using the results obtained for this case in works of Howard (1969)
and Kroll and Veronis (1970). For this case of rocky bottom the new time of
spin up can be approximately five times shorter than in the case of smooth
bottom. This increasing of frictional effects near the bottom will effec-

" tively reduce the anticyclonic motion in the lower layer which is created
during the horizontal and vertical expansion of the upper layer vortex because
of stretching of vortex lines. Also, because of the increasing of the bottom

:, ..' .'-~~. .. . .' .. . . . . . . ,. . . . . . . . . . . . * . " . . , . . . - . . ,. . , -. . . . . • . . . . . . . . . <
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Ekman layer divergency, the downward velocity in the lower layer must
increase. The changes in the dynamics of the lower layer may significantly
influence the dynamics and stability of the upper layer baroclinic vortex.
The experimental results which are presented in the next section seems to
support this suggestion.

III. Experimental Results "

1. The continuous supply experiment

In both cases with rough and smooth bottom, the dome was observed to be
unstable to nonaxisymmetrical disturbances with the wavenumber n 2. The
series of photographs on which the features of instability are clearly seen
are illustrated in Figures 2 and 3, correspondingly. In the cases shown in
these figures, the instability did not lead to the destruction of the whole
dome and to the splitting of the vortex into the pair of vortices as was shown
in the experiment of Griffiths and Linden (1981). After the period of
developing of instability, the restabilization of the dome occurs. After the
process of restabilization of the dome, the second instability can occur.
However, in more than one experiment with the smooth bottom, the dome was
broken into a pair of vortices during the instability, and no restabilization
process was observed. In this particular case the dome had the highest amount

• .of potential energy before the onset of instability. It seems that the
intensity of the instability process strongly depends on the amount of
potential energy which the dome obtained before. It is obvious that this
amount of potential energy will be greater if the dome will be stable for a
long time during the constant supply. However, from Figures 2 and 3, one can
see that in the case of rough bottom, instability occurs much sooner than in
the case of smooth bottom, and the dome at the onset of instability has a much K .
smaller size in the case of rough bottom. In the series of experiments it was
obtained that the average time I of the onset of instability counted from the. .: ,?
beginning of the experiment is:

a) In the case of smooth bottom
Ts - 2010 + 360 s

b) Irthe case of rough bottom .
= 830 + 430 s

The ratio between these two times is
- - . ,.

2.4

so it seems that there is more chance to achieve good splitting of the dome in
the case of smooth bottom during constant supply regime. It is also important
to mejlon that the stability parameter 'f =9(t4/J )1/2 (where -

- 1 /10and o* is the depth of the fluid in the tank at
the moment of the beginning of Instability) has
different valuet in these two cases:

a) The average at the beginning of instability in the e,

case of smooth bottom is: " 0.017 + 0.05

b) In the case of rough bottom: - 0.44 + 0.15

- The value iffor the case of smooth bottom obtained in our experiment is
approximately the same as in the Griffiths and Linden (1981) experiment, but

V ,-*....
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for the rough bottom it is somewhat larger. Another important thing is that
there were no significant changes in the value of Y Just before the onset of
instability (see Figures 6a - 8). At the beginning of the experiment the
value of Fis rapidly decreasing, but then it changes only slightly. It seems
that the vortex becomes unstable, not only because the instability
parameter reaches the critical value, but al or some other reasons. One

* can suppose that the condition of small value of is an important one, but
not sufficient. The whole series of data was used to achieve the laws of
dependences of H and R on i in the cases of rough and smooth bottom. The .

results are shown in Figures 8 and 9 correspondingly. It is interesting that
in the case of rough bottom, the height H is growing with time faster than in
the case of the smooth bottom. So the vortex in the case of rough bottom has
more sharp density fronts and its bottom is closer to the bottom of the tank
in the same time than in the case of smooth bottom.

2. The experiments with finishing supply before the onset of instability

In both cases of rough and smooth bottom these vortices become unstable
to the disturbances with wavenumber n - 2. The instability leads to the
destruction of the dome and to the splitting into two vortex pairs (except,
perhaps, the case where the dome is small and does not have enough potential
energy to split). No restabilization of the dome was observed. The sequences
of photographs illustrating the process of instability are shown in Figures 4
and 5 for the case of rough and smooth bottom correspondingly. The supply was
finished at the time t = 650 s in the case of rough bottom (Figure 4c) and at
the time t - 800 a in the case of smooth bottom (Figure 5c). The volumes of
fluid in the dome at these moments of time were approximately equal to each
other. After this the vortices were stable for "$olj. time.. During this
time they were slowly decreasing because of frictional effects. After ' ,. 30MoC.

time the instability began. The time interval 4 t between the moments
of the end of supply and the beginning of instability was different in the

* cases of rough and smooth bottom.

1) In the case of smooth bottom:

Atz -150 + 60s

2) In the case of rough bottom:
jts 370O+ 40s

* r-; The ratio between these two intervals of time is

- 2.5

So, in the case of rough bottom, instability occurs much sooner than in the
case of smooth bottom after the end of supply.

It is important to mention that the processes of the developing of
instability and splitting of domes goes very fast. It takes only a few
periods of rotation while the period before the beginning of instability after
supply is stopped, was more than ten periods of rotation in every case.

We also calculated the values of the stability parameter. In this
situation the stability parameter at the beginning of instability does not
differ significantly in both cases:

a) In the case of smooth bottom
- 0.031 + 0.012

* * b) In the case of rough bottom
- 0.038 + 0.007

0.. ................... ....... ............ .,,... ,..
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As in the situation with constant flux regime, the value of Y was not
changing significantly in the interval between the moments of finishing flux

and the beginning of instability (see Figure 7a and b).

IV. Conclusions

1. During the constant supply regime, in the case of rough bottom,
4 instability begins sooner than in the case of the smooth bottom. The -"

stability parameter r at the beginning of instability is remarkably
larger in the case of rough bottom.

* 2. During the constant supply regime, after a period of development of
* instability, the dome structure can be restabilized after a period of

development of instability. This suggests that the incoming nonrotating fluid
plays the stabilizing role on the dome structure. After the process of
restabilization, another instability can occur.

3. The growth rate of the height H of the dome during the supply
regime before the instability is greater in the case of rough bottom. .

4. After the supply is finished, the instability occurs which leads tothe rapid decay of the dome structure and splitting into two vortex pairs.

5. The interval of time between the moments of finishing supply and
beginning of instability is compared to the time of viscous spin up of the
vortex. This time interval is shorter in the case of rough bottom.

6. The intensity of instability relate. on the amount of potential
energy which the dome obtained before the onset of instability.

7. It seems that the stability parameter which was used in the work
of Griffiths and Linden (1981) and in this paper is not the best one for
prediction of instability. One can suppose that the stability parameter must
somehow include the frictional effects at the bottom of the tank and in the
interior of the fluid.
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SOME THREE-DIMENSIONAL ASPECTS OF COASTAL UPWELLING

Pierre J. Flament

1. Introduction.
-4 * %

Thermal infrared satellite images have shown that coastal upwelling .'

is often a strongly three-dimensional process, and is therefore not
adequately described by two-dimensional models. For reviews, see Allen (1980)
and Brink (1983) ; for a recent two-dimensional model, see Foo (1980).

In this paper, I present new observations on three-dimensional aspects
of upwelling, and discuss a simple mean flow / mixed layer interaction model
consistent with some of the frontal features observed.

2. Observations.

Figure I is a typical surface temperature pattern off California
during upwelling favorable winds (the thermal radiation is emitted by a thin r.,
surface layer a few )im thick, but the radiometric temperature is correlated
with the bulk temperature when there is a well mixed surface layer : in
particular, when the wind is strong).
The cold near-shore region is visible on the right (A). The main upwelling
front (B) is highly convoluted, and meanders into two cold filaments (C,D)
extending more than 100 km offshore.
Figure 2 is a sequence showing the evolution of a similar but stronger
filament.

Surface drifter tracks (Davis et al., 1982) and hydrographic surveys

(Huyer, 1982, personal communication) have shown that these narrow
filaments are strong dynamical jets (they are not cold water streaks entrained
between meso-scale eddies). Their geostrophic signature is confined near the
surface, with an e-decaying depth of about 10Om ; their typical width is
10 km, and their maximum surface velocity is of the order of 0.5 m/s,
corresponding to an estimated transport of up to 106 m3/s (I Sv).

The vertical structure of the jet shown on figure 2 has been studied
using a yo-yoed conductivity-temperature-depth probe towed along the line A-B,
about 200 km offshore. The results are sketched on figure 3.

A striking characteristic is the thermal asymetry of the jets
the southern front is generally sharp (often I C in less than 100 m),
while the northern boundary has smoother gradients (I C in a few km).
At this distance from the coast, the sharp front tends to be salinity-
compensated : there is little or no density gradient (unlike the main
near-shore upwelling front which is usually also a strong density front).

The temperature signature of the jet is confined to the turbulent

surface layer : there is no temperature front in the thermocline. The depth
of the bottom (E) of the surface layer, which lies approximately on an iso-
pycnal, varies on short distances : in less than 10 km, it increases from
30 m under the sharp front (C), to 60 m at (D). Between (C) and (D),
the surface layer is not well-mixed and isothermal : there is an intrusion (F)
of warm, saline water underneath the cold, fresh near-surface water.

iN t- *.- v* - *"
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Many regions with vertical gradients favorable to differential
diffusive processes are observed, and a complicated pattern of small
thermohaline intrusions is found ; only the largest is sketched on figure 3
it detaches from the mixed layer at (D) where it crosses isopycnals, and
lies on a density surface thereafter.
We also note that, because the sharp thermohaline front is in a fully
turbulent mixed layer (the wind was blowing at 20 m/s), its dynamics should
be different from the model discussed by Ruddick and Turner (1979), which
concerns interleaving at a vertical thermohaline front between initially

1.P.. quiescent fluids. Ol

The jets are unstable, and eddies grow on both sides, but the insta-bilities are more visible on the south front due to the thermal asymetry.
Using Killworth's (1980) nomenclature, the non-dimensional parameters of
the flow are X= 0(1) and 6<< 1, which classifies the instability as baro-
tropic or mixed : the growing perturbations are fed mainly from the kinetic
energy of the mean flow.
The typical wavelength of the instabilities is 30-50 km, and the angular
velocity of the eddies is of order f the Rossby number is of order 1.

d., 
..

Similar jets are found in the Eastern Pacific from Baja California to
Washington. Their spacing is variable, from 50 km to 300 km, and seems to
increase with time during the upwelling season : late summer patterns often

" display fewer and stronger jets than early spring ones ; however, the
satellite image set is not yet statistically significant to make this a
final statement.

The data set is also insufficient to decide whether the jets are
related to upwelling centers (regions of intensified upwelling due to enhanced
wind-stress, large coastline curvature or bottom topographic features),
and hence are repeatedly found at the same location, or result from the
finite amplitude growth of a fundamental instability of the upwelling front
(somewhat similar to the instabilities discussed by Criffith in his lecture)
the mechanism of the jets, and the origin of their huge kinetic energy
is an open question requiring further experimental and theoretical work.

It is interesting to compare the offshore transport due to the jets
with a typical wind-driven Ekman transport, both per meter of coastline.
For the jets, assuming a rate of flow of 0.5 Sv and a spacing of 200 km,

* we find : 2.5 m2 /s.
For the Ekman transport, assu-ling a wind speed of 10 m/s : / IF = 4 m2/s.
They have the same order of magnitude, and it is clear that the jets
cannot be ignored in a complete dynamical model of upwelling.

In the next section, I present a simple model of frontogenesis/lysis

.rconsistent with the thermal asymetrv of the jets.

--- * . . * .... . . . . . . . . .. . ...- - - - -- , - - . -- - - . . - --.*" ---.- -. -'.-'-- ,-. S.. > -'-..- .. .. -.*. * --,. A:,:-,L~ X -
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3. A linear wind-driven frontogenesis model.

We are interested in the lowest order effects of the interaction between
a narrow jet and the Ekman transport of a wind mixed layer. j

We consider an incompressible, Boussinesq, hydrostatic fluid with an
% upper turbulent layer of density p. and an infinitely deep lower layer of ,

density P,+ Ap The frame of reference is taken as usual : x eastwards,
y northwards and z upwards.

The interface z = h(x,y,t) - H is defined slightly deeper than the
depth of the turbulent layer, so that the turbulent stress vanish on this
surface ; at the free surface, the turbulent stress is the applied wind stress T".

We assume that the mixed layer has reached an equilibrium depth, and that
further deepening (or shallowing) can only be caused by Ekman downwelling
(or upwelling) without entrainment (detrainment) of new fluid.
We neglect horizontal gradients of turbulent stresses.

The jet is represented by a steady westward flow

U. = (MY),O) ; < 0

present at all depths ; in the upper layer, there is an additional velocity .
that we split in two components:

- u is the inviscid flow due to the pressure gradient V h -

- u' is the residual (Ekman) flow balancing the stresses.

U. (y)

Y (N)'

,~ -U - :::.V CL

h (x, y,t)

- *.~ ,',*. *,.- J ,

r;L *Ap

...............................-. '..'.-.-. -(-E)....... ..........

.~~ ~ .. . . . . . . . .
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Write mean momentum and mass conservation equations for u and u'
integrate vertically between the interface and the free surface-using the
boundary conditions on the stress, and get, after some algebra

u + (u +U.) V u + u V U + f x u gr V h (1)

-

3 h + (u + U,)" V h + (h - H) V * u = V (2)

a i + (u + U.) V i + • V (u + U.) + i V • u

f0 T
+ V u' u' dz + fx = -- (3)

-hH -- - 0

r0
where u = u' dz is the wind-driven Ekman transport,

fh-H

and g' = g AP / P. is the reduced gravity.

Similar equations are derived in more details by Stern (1975) and
Weller (1982) ; they are independent of the detail of the velocity field
within the mixed layer.

. We want to study the effects of the divergence V • of the Ekman
transport, using an approach formally analogous to the linear model of the

ponset of coastal upwelling proposed by Yoshida (1955).

This leads us to the following additional assumptions

- the along-jet component u of u is in geostrophic balance with
the across-jet pressure gradient 3 h

y

- at t = 0 , the interface is undisturbed h(x,y,O) = 0
and hence u(x,y,O) = 0

- the equations are linearized this is justified for short times,
Jul << U. and h << H , and for small wind stresses, lui << u 0

- the wind is steady or varies slower than the inertial period,
so that the adjustment to Ekman balance can be regarded as
instantaneous : 0 in (3). This removes wind-excited

" inertial oscillations and their interaction with the mean flow,
discussed by Weller (1982)

- the system remains independent of x at all times. This assumption
is the most restrictive and even questionable : it removes the
effects of the coast and of the finite length of the jets, and

". excludes a priori horizontal "confluent" motions, leaving
downwelling as the only possible consequence of an Ekman ....
convergence.

* . .9.9*.*. .*,-..9*-*.--** ".* :*
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With these assumptions, (1)-(3) reduce to

t u + v a Uo - f v 0 (4)

f u g' a h (5)

ath Ha v a v (6)

y (7)

f P,

-

T (8)

(f a U) PO
y

To linearize (3), we made the small wind stress assumption. The wind stress
is

C P U- TO U U).9

=d air (8 V--..-U0 )

where U is the wind velocity ; because the scale of the oceanic flows

considered here is much smaller than the scale of typical meteorological
systems, U wis taken as constant.

For very small winds ( U of the order of U. ), the wind velocity

relative to the water varies significantly across the jet, and induces a
divergence in the Ekman flow. However, this effect can be ignored here, because
winds small enough to be of the order of U., are in general too weak to maintain
a well mixed surface layer in the presence of diurnal heating. .

"Small wind stresses" therefore means small enough for the quadratic terms in (3)
to be neglegible, yet large enough to be uninfluenced by the water velocity . ¢.'"

C d Ca Pair U Uw U (9)" ":

Equation (8) shows that the across-jet Ekman flow v depends on the
total vorticity of the flow : north of the axis, the negative local vorticity
reduces the total vorticity, and the Ekman flow is larger, while south of the
axis, the situation is opposite : these variations of v generate a divergence
in (6), which is important for strong, narrow jets.

A positive divergence will decrease the gradient of a passive tracer ' W-.e
advected by the flow, and is frontolytic ; a convergence increases the gradient
and is frontogenetic.

Because we required invariance for x-translations, only the comoonent
of the wind parallel to the jet generates divergences in the Ekman flow.

7
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Figure 4 shows a numerical solution of the equations, for a wind blowing
eastwards.
For short times, the southwards Ekman velocity v' is slower south of the jet,
and faster north of it (figure 4b). There is a strong frontogenetic downwelling
near the axis of the jet, and a strong frontolytic upwelling north of it
(and a weaker one south, figure 4c).

Thus a westerly wind generates an asymetry similar to the one observed
on figures 1 and 2, where de winds were from the northwest : strong gradients
south, weak gradients north.
The asymetry should reverse when the wind is blowing from the northeast
correlating frontal gradients with the synoptic wind direction on the available
satellite archives would be an excellent test of the mechanism proposed.

The height of the interface after 6 hours (figure 4d) is similar to the
observed slope (A-C-D-B) of the isopycnal (figure 3).
Another encouraging result is the variation of the Ekman velocity v', which is
similar to an accoustic doppler velocimeter record made during the tow
(communicated by Mike Kosro).

The region of strongest gradient does not coincide with the point of -'.

maximum downwelling (D) : curiously, it is found several km south of it, at (C).

Assume that the temperature is a passive scalar advected southwards by the
cross-jet Ekman flow

3t 0 + v' ay 0 = 0 (10)

This equation is integrated numerically, with an initial constant gradient
of 50 IC/m.

For short times, the gradient is enhanced on the axis as expected,
and red-iced north of it (figure 4e).
For long times, the Ekman flow continuously advects the whole structure
southwards, and the region of strongest gradient is found several km south of
the axis, in qualitative agreement with the observations (figure 4f).

This argument is plausible, but we are certainly pushing our simple linear
model too far, and the conclusion should be validated by more sophisticated
models discussed below. Other mechanisms cannot be ruled out at this stage,
for example shear-enhanced gradients on a jet with asymetric velocity profiles.

-4. Conclusions.,

We have developed a simple frontogenetic model consistent with the
thermal structure of upwelling filaments.

q.-°,

Of course this model is crude and has many limitations : some of the
simplifying assumptions should be relaxed and further work is required to
confirm the mechanism proposed.

One way to improve the model is to keep a similar parameterization of
the mixed layer turbulence, but to integrate numerically the full non-linear
equations (I)-(3) with a two-dimensional imposed mean flow (x,y).
The effects of the meanders and of the instabilities of the jet on the mixed
layer could be explored with such a model.

'AL
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The other direction is to construct a two-dimensional (y,z) model with
a more realistic treatment of the turbulence including entrainment, similar to
the parameterization of de Szoeke and Richman (1981) or Cushman-Roisin (1981),
but allowing for a more detailed vertical structure of the turbulent layer.
One may hope to reproduce, for example, the vertical temperature profile
observed between (C) and (D).

Garrett(1982) mentions straining by a field of meso-scale eddies as a
mechanism steepening thermohaline gradients to the point where differential T
diffusive instabilities can develop. In the presence of an eddy field with
high local vorticities, the horizontal gradients in the surface Ekman layer p
are further sharpened by the frontogenesis process proposed here : the impli-
cations on the parameurization of near-surface horizontal mixing should be
investigated. Similar effects on bottom Ekman layers should also be studied.

Finally, this approach to wind-driven frontal dynamics could be applied
to the main upwelling front and the coastal jet, and throw some new light on
the problem of cross-shelf circulation cells. -.
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Figure 21

Sea surface temperature field off Point Arena, California, July 21st at 23 UT,
July 22nd at 1, UT and July 22nd at 22 UT, 1982.
The coast is at the right edge of the lower image ; the lower image width is 250 km.
A steady wind from the NNT4 had been blowing at 20 m/s for 2 days.
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